Learning

OP GCD = (LINT a, b) LINT

: (b=0© | ABS a | b GCD (a MOD b));
PROC crout = (REF [,] FRAC a, REF [] INT p) VOID:
LU-decomposition cf. Crout, of a matrix of rationals.
BEGIN INT n UPB a @
T n
- 08 Genie
1 FRA a1k al, k], alkq)
FOR i FROM k TO n
DO aik[i] -:= a[i, 1 : k1] INNER aik[1l : kl1];
IF piv = LINT (©) AND aik[i] /= LINT (0)
THEN piv := aik[il;

Algol 68 Genie 3.5

Edited by Marcel van der Veer

Learning Algol 68 Genie copyright © Marcel van der Veer 2008-2023.
Algol 68 Genie, an Algol 68 implementation, copyright © Marcel van der Veer 2001-2023.

Learning Algol 68 Genie is a compilation of separate and independent documents or works, consist-
ing of the following parts:

I. Informal introduction to Algol 68,
II. Programming with Algol 68 Genie,
III. Example programs,
IV. Algol 68 Revised Report,
V. Appendices

Part I, II, IIT and V are distributed under the conditions of the GNU Free Documentation Li-
cense: Permission is granted to copy, distribute and / or modify the text under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled GNU Free Documentation License. See
https://www.gnu.org.

Part IV is a translation of the Algol 68 Revised Report into HIEX and is therefore subject to
IFIP’s condition contained in that Report: Reproduction of the Report, for any purpose, but only
of the whole text, is explicitly permitted without formality. Chapter 20 Specification of partial
parametrization proposal is not a part of the Algol 68 Revised Report, and is distributed with kind
permission of the author of this proposal, C.H. Lindsey.

This publication contains material from various free or open source publications. For a list of those
publications and their licenses see section A.1 in the bibliography.

IBM is a trademark of IBM corporation.

Linux is a trademark registered to Linus Torvalds.

Mac OS X is a trademark of Apple Computer.

Pentium is a trademark of Intel Corporation.

TEX is a trademark of the American Mathematical Society.
Unix is a registered trademark of The Open Group.
Wikipedia is a trademark of the Wikimedia Foundation, Inc.

Edition from February 2024, typeset in ITEX.

https://www.gnu.org

Table of contents

Preface

I Informal introduction to Algol 68

1 Preliminaries

1.1 A brief history of programming languages
1.2 A brief history of Algol 68
1.3 Notationof syntax
2 Basic concepts
2.1 Displays e e e e e
2.2 Modesand values e
2.3 Whole numbers
2.4 Identifiers and identity declarations
2.5 Realnumbers e
2.6 Formulas e
2.7 Mathematical functions,
2.8 Booleanvalues e
2.9 Charactersandtext
2.10 Comparison operators i e e
2.11 Variables and assignation,
212 ThevalueNIL e
2.13 Assignment combined with an operator

3 Stowed and united modes

3.1 Introduction e
3.2 Rowsand row displays e
3.3 Subscripts, slicesand trims o
3.4 Operators for rows e e e
3.5 Flexible names and the mode STRING
3.6 Vectors, matrices and tensors e
3.7 Torrix extensions e e e
3.8 Anoteonbrackets
3.9 Structuredmodes e
3.10 Fieldselections e
3.11 Mode declarations e

xi

11
11
12
13
15
17
20
24
25
25
27
28
32
33

35
35
35
39
43
44
47
48
49
49
55
56

1il

TABLE OF CONTENTS

v

3.12
3.13
3.14

Complexnumbers e
Archaic modes BITS and BYTES
United modes e

Program structure

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Introduction
Theclosedclause e
The conditional clause
Pseudooperators e
Identity relations
Thecaseclause i it e e
The conformity clause
Balancing e
Theloopclause e e
Order ofevaluation e
Comments and pragmats e
Parallel processing e e
JUMPS . . e e e
Assertions e

Procedures and operators

5.1 Introduction
5.2 Routinemodes
5.3 Calls and parameters
5.4 Routinesandscope
5.5 Declaring new operators
5.6 Identification of operators
5.7 Recursion e
5.8 Recursion and data structures
59 Recursive mode declarations
5.10 Partial parameterisationand currying
Modes, contexts and coercions

6.1 Introduction e
6.2 Well-formedmodes
6.3 Equivalence of modes
6.4 Contexts e e e
6.5 COBrCIONS v o e e e e
Transput

7.1 Transput e
7.2 Channelsandfiles
7.3 United modes asarguments,
7.4 Transput andscope e

65
65
65
67
70
71
72
74
76
76
80
81
82
84
86

87
87
90
91
95
96
98
99
103
107
107

109
109
109
112
113
115

TABLE OF CONTENTS

7.5 Readingfiles
7.6 Writingtofiles
7.7 String terminators
7.8 Events
7.9 Formatting routines
7.10 Straightening
7.11 Default-format transput
7.12 Formatted transput.
7.13 Binaryfiles
7.14 Usingastringasafile
7.15 Other transput procedures
7.16 Appendix. Formatting routines

8 Context-free grammar

8.1 Introduction
8.2 Reserved symbols
8.3 Digit symbols
8.4 Letter symbols
8.5 Bold letter symbols
8.6 Tags. e
8.7 Particular program
8.8 Clauses i iie e
8.9 Units
8.10 Declarations
811 Declarers.
812 Pragments
8.13 Refinements
8.14 Private productionrules

II Programming with Algol 68 Genie

9 Installing and using Algol 68 Genie

9.1 Algol68 Genie
9.2 Algol 68 Genie transput
9.3 Installing Algol 68 Genie on Linux
94 SYNOPSIS « v v v e e e e e e e e e e e e
9.5 Diagnostics
9.6 Options i i
9.7 The preprocessor
9.8 The monitor
9.9 Algol 68 Genieinternals
9.10 Limitationsandbugs.

TABLE OF CONTENTS

10 Standard prelude and library prelude 209
10.1 Thestandardenviron 209
10.2 Thestandard prelude, 209
10.3 Standardmodes e 210
10.4 Environmentenquiries.t i it i e e e e 211
10.5 Standard operators 215
10.6 Standard procedures e e 228
10.7 Statistical procedures from Rmathlib 232
10.8 Functions from the GNU Scientific Library 236
10.9 Random-number generator 242
10.10 Linear algebra. e 242
10.11 Fourier transform e 249
10.12 Laplace transform e 250
10.13 Constants e e e 251
10.14 Transput e e e e 259
10.15 Thelibrary prelude e 269
10.16 ALGOL68C-style transput procedures 269
10.17 Drawingandplotting 272
10.18 Linux exXtensions v v v i i i e e e e e e e 279
10.19 Miscellaneous definitions 279
10.20 Regular expressions in string manipulation. 288
10.21 Curses support e e e e e e e e e e 291
10.22 PostgreSQL support e 291
10.23 PCM Sounds i i e e e e e e e 302

IIT Example Algol 68 programs 307

11 Example programs 309
11.1 Hammingnumbers e 309
11.2 Romannumbers. e e 310
11.3 Hilbert matrix using fractions 311
11.4 Parallel sieve of Erathostenes 314
11.5 Mastermind code breaker 315
11.6 Decisiontree. e e e e e e 316
11.7 Peano curve i i i e e e e e e e e e e e e e 318
11.8 Fibonaccigrammar it e e e e e e e 319

IV Revised report on Algol 68 321

12 About this translation 325

13 Acknowledgments 327

Vi

TABLE OF CONTENTS

14 Introduction 331
14.1 Aims and principlesofdesign, 331
14.2 Comparison with Algol 60 333
14.3 Changes in the method of description 338

15 Language and metalanguage 343
15.1 The method of description 343
15.2 Introduction 343
15.3 Pragmatics. e e 344
15.4 Translationsandvariants 358
15.5 General metaproductionrules, 359
15.6 General hyper-rules 361

16 The computer and the program 365
16.1 Terminology e e e e 365
16.2 Theprogram o i e e e e e e 381

17 Clauses 387
17.1 Closedclauses e e e e e 388
17.2 Serialclauses e e 389
17.3 Collateral and parallelclauses 392
174 Choiceclauses e e e e e e 396
175 Loopclauses e e 401

18 Declarations, declarers and indicators 405
18.1 Declarations e e e 405
18.2 Mode declarations e e 406
18.3 Priority declarations 407
18.4 Identifier declarations 408
18.5 Operation declarations 411
18.6 Declarers e e e e 412
18.7 Relationships betweenmodes 417
18.8 Indicators and field selectors 418

19 Units 421
19.1 Syntax e e e e e e e 421
19.2 Units associated withnames 422
19.3 Units associated with stowed values 428
19.4 Units associated with routines 433
19.5 Units associated with valuesofanymode 439

20 Specification of partial parametrization proposal 441

21 Coercion 449
211 CO0BICEES . . v v v o i e e e e e e e e e e e e e e e e e e 449

Vil

TABLE OF CONTENTS

21.2 Dereferencing 452
21.3 Deproceduring i e e e e e e 452
214 Uniting e e e e e e 453
2156 Widening e e e e e 454
21.6 Rowing e e e e 455
21.7 Voiding e e 457
22 Modes and nests 459
22.1 Independence of properties, 459
22.2 Identificationinnests 462
22.3 Equivalenceofmodes 464
22.4 Well-formedness 469
23 Denotations 473
23.1 Plaindenotations 473
23.2 Bitsdenotations 478
23.3 Stringdenotations e 480
24 Tokens and symbols 483
241 Tokens e e e e e 483
24.2 Comments and pragmats 484
24.3 Representations e e e e 486
24.4 The reference language 487
25 Standard environment 499
25.1 Programtexts e e e e e 499
25.2 Thestandardprelude 504
25.3 Transput declarations 516
25.4 The system preludeand tasklist 590
25.5 The particular preludes and postludes 591
26 Examples 593
26.1 Complexsquareroot i e 593
26.2 Innerproduct 1 e 593
26.3 Innerproduct2 594
26.4 Largestelement 594
26.5 Eulersummation 595
26.6 Thenormofavector, 595
26.7 Determinantofamatrix, 595
26.8 Greatest common divisor e 596
26.9 Continued fraction e 597
26.10 Formula manipulation 597
26.11 Informationretrieval 599
26.12 Cooperating sequential processes i 601

viii

TABLE OF CONTENTS

26.13 Towersof Hanoi 602
27 Glossaries 603
27.1 Technicalterms e 603
27.2 Paranotions e e e e e e e e 611
27.3 Predicates e e e 617
27.4 Index to the standardprelude 618
27.5 Alphabetic listing of metaproductionrules 626
V Appendices 631
A Bibliography 633
A.1 Freeor open source publications 633
A2 Informaltextson Algol68 634
A3 Algol 68 Genie extensions i 634
A.4 Algol 68 Genie parsing algorithm 634
A5 Historyof Algol 68 e 635
A.6 Online informationon Algol 68 635
A.7 Alternatives for Algol 68 Genie, 636
A.8 Legacy Algol 68 implementations. 636
B Reporting bugs 639
B.1 Haveyoufoundabug? 639
B.2 How and where toreportbugs 640
C GNU General Public License 641
D GNU Free Documentation License 655
Keyword index 663

X

Preface

{Les inventions qui ne sont pas connues ont toujours plus de
censeurs que d'approbateurs.
Lettres dédicatoires & Monsieur le Chancelier. Blaise Pascal. }

Learning Algol 68 Genie is distributed with Algol 68 Genie, an open source Algol 68 hybrid
compiler-interpreter that can be used for executing Algol 68 programs or scripts. Algol 68
Genie is a new implementation written from scratch, it is not a port of a vintage implemen-
tation. This publication corresponds to Algol 68 Genie Version 3.5. Algol 68 Genie imple-
ments practically full Algol 68 as defined by the Revised Report, and extends that language
to make it particularly suited to scientific computations. This publication provides an in-
formal introduction to Algol 68, a manual for Algol 68 Genie, and a KTEX translation of the
Revised Report on Algol 68. It describes how to use Algol 68 Genie, as well as its features
and incompatibilities, and how to report bugs. Algol 68 Genie is open source software. The
license for Algol 68 Genie is the GNU GPL {C}.

The development of Algol was an international platform for discussing programming lan-
guages, compiler - and program construction, et cetera, and stimulated computer science
as an academic discipline in its own right. The preservation of Algol 68 is important from
both an educational as well as a scientific-historical point of view. Algol 68 has been around
for five decades, but some who rediscovered it in recent years, well aware of how the world
has moved on, had a feeling best described as plus ca change, plus c’est la méme chose.
One of the reasons for this is that Algol 68 introduced a number of concepts that are now
common, for example structured and united values, the possibility to define new types and
operators on them, et cetera.

A more or less comprehensive list of reasons for the continuing interest in Algol 68 { and
preservation of the language } would be:

e Importance to the history of science. As already indicated, the development of Algol
played a role in establishing computer science as an academic discipline in its own
right. Algol 68 was designed by a learned committee whose meeting accounts show
that there was, at times vigorous, debate before Algol 68 was presented. The influ-
ence of Algol is still tangible since it is to this day referred to in teaching material,
discussions and publications. Therefore, knowledge of Algol is required to understand
the current status of computer science.

X1

LEARNING ALGOL 68 GENIE

* Academic interest. People interested in the design and formal specification of pro-
gramming languages, such as students of computer science, should at an appropriate
moment study Algol 68 to understand the influence it had. Algol 68 lives on not only
in the minds of people formed by it, but also in other programming languages, even
though the orthogonality in the syntax, elegance and security has been mostly lost.

* Practical interest. Algol 68 has high expressive power that relieves you from having
to write all kind of irrelevant technicalities inherent to programming in many other
languages. For programmers, the world has of course moved on, but the reactions to
Algol 68 Genie suggest that many people who have seriously programmed in Algol 68
in the past, only moved to other programming languages because the Algol 68 imple-
mentations they were using were phased out. Algol 68 is a beautiful means to denote
algorithms and it still has its niche in programming small to medium sized applica-
tions for instance in the field of mathematics, or numerical applications in physics -
or chemistry problems.

Though Algol 68 did not spread widely in its day, it introduced innovations that are rel-
evant up to the present. Its expressive power, and its being oriented towards the needs
of programmers instead of towards the needs of compiler writers, may explain why, since
Algol 68 Genie became available under GPL, many appeared interested in an Algol 68
implementation, the majority of them being mathematicians or computer scientists. Some
still run proprietary implementations. Due to this continuing interest in Algol 68 it is ex-
pected that people will be interested in having access to documentation on Algol 68, but
nowadays most material is out of print. Even if one can get hold of a book on Algol 68, it
will probably not describe Algol 68 Genie since this implementation is most likely younger
than such book.

The formal defining document, the Algol 68 Revised Report, is also out of print but a IXTEX
version comes with this publication. The Revised Report ranks among the difficult publica-
tions of computer science and is therefore not suited as an informal introduction. In fact, it
has been said that at the time Algol 68 was presented some fifty years ago, the complexity
of the Revised Report made some people who allegedly did not use Algol 68 believe that the
language itself would be complex as well. That misconception has persisted up to this day
- Algol 68 would be "difficult", "complex" or even "bloated". After reading this publication
you will likely agree that Algol 68 is in fact a relatively lean language that is quite easy to
use.

This publication consists of original Algol 68 Genie documentation and material from var-
ious free or open source publications {A.1} that have been edited and blended to form a
consistent, new publication. This text is in the first place documentation for Algol 68 Ge-
nie; it is neither an introduction to programming nor a textbook for a course in computer
science. Parts I through III are a comprehensive introduction into programming with Al-
gol 68 Genie. Since Algol 68 is nowadays not commonly known and the Revised Report is
terse, it is desirable to have an informal introduction in this documentation. I am aware
that this creates some unevenness in the set-up and level of this publication, but if you

X11

PREFACE

succeed in programming in Algol 68 using this text, then the objective of this publication
is met.

Algol 68 Genie

The language described in Parts I through III of this publication is that implemented by
Algol 68 Genie available from:

https://jmvdveer.home.xs4all.nl/
Prebuilt binaries, for instance WIN32 binaries for Microsoft Windows, are available from:
https://sourceforge.net/projects/algol68/

but also from for instance Debian (stable), Ubuntu (universe) or OpenBSD (ports) reposi-
tories.

Please consider joining the Algol 68 user group at LinkedIn:
https://www.linkedin.com/groups/2333923

Marcel van der Veer is author and maintainer of Algol 68 Genie. Algol 68 Genie imple-
ments almost all of Algol 68, and extends that language. To run the programs described
in this publication you will need a computer with Linux or a compatible operating system.
Chapter 9 describes how you can install Algol 68 Genie on your system, and how you can
use it. Algol 68 Genie is open source software distributed under GNU GPL. This software
is distributed in the hope that it will be useful, but without any warranty. Consult the
GNU General Public License! for details. A copy of the license is in this publication.

Algol 68 Genie version 1 was an interpreter. It constructed a syntax tree for an Algol 68
program and the interpreter executed this syntax tree. As of version 2 and on Linux or com-
patible? operating systems, Algol 68 Genie can run in optimising mode, in which it employs
a unit compiler that emits C code for many units involving operations on primitive modes
INT, REAL,BOOL,CHAR and BITS and simple structures thereof such as COMPLEX. Execution
time of such units by interpretation is dominated by interpreter overhead, which makes
compilation of these units worthwhile. Generated C code is compiled and dynamically
linked before it is executed by Algol 68 Genie. Technically, the compiler synthesizes per
selected unit efficient routines compounding elemental interpreter routines needed to exe-
cute terminals in the syntax tree; compounding allows for instance common sub-expression
elimination. Generated C code is compatible with the virtual stack-heap machine imple-
mented by the interpreter proper, hence generated code has full access to a68g’s runtime
library and the interpreter’s debugger. Many runtime checks are disabled in optimising

ISee https://www.gnu.org/licenses/gpl.html.
2Compatible means here that the operating system must have a mechanism for dynamic linking
that works the same as on Linux.

xiil

https://jmvdveer.home.xs4all.nl/
https://sourceforge.net/projects/algol68/
https://www.linkedin.com/groups/2333923
https://www.gnu.org/licenses/gpl.html

LEARNING ALGOL 68 GENIE

mode for the sake of efficiency. Therefore, it is recommended to only specify optimisation
for programs that work correctly. Due to overhead, optimisation is not efficient for pro-
grams with short execution times, or run-once programs typical for programming course
exercises.

Conventions in this publication

Algol 68 source code is typeset in fixed-space font like this:
#

Takeuchi’s Tarai (or Tak) function. Moore proved its termination.
See mathworld.wolfram.com/TAKFunction.html
#

PROC tak = (INT i, 9, k) INT:
IF 1 <= j
THEN 3
ELSE tak (tak (1 - 1, 3, k), tak (3 - 1, k, i), tak (k - 1, i, 73J))
FI;

Sometimes code is substituted with . .. when it would not be relevant to the explanation
at hand, as in for instance:

PROC tak = (INT i, j, k) INT:

In this publication, a68g output is typeset as:

$ a68g hello.a68
Hello, world!

Throughout the text you will find references to other sections; for instance {1.1} refers to
section 1.1 and {A} refers to appendix A. This publication contains references that are listed
in the Bibliography. A format as [Mailloux 1978] means the entry referring to work of Mail-
loux, published in the year 1978. An indication AB39. 3.1 means ALGOL BULLETIN, volume
39, article 3.1. The ALGOL BULLETIN is still available on the internet. On various places in
Parts I through III you will see references to the Revised Report in Part IV formatted as for
example {2519.1.1.A} referring you to chapter 25, section 1.1(.1), mark A, where the chap-
ter number refers to Part IV, while its suffix refers to the chapter number in the original
Revised Report.

X1V

PREFACE

Organisation of this publication

Part I. Informal introduction to Algol 68

* Chapter 1 Preliminaries gives a brief history of Algol 68 and introduces a notation
for production rules.

¢ Chapter 2 Basic concepts introduces standard modes representing plain values (inte-
gers, reals, booleans and characters), as well as variables. This chapter also explains
formulas involving operands of standard modes.

¢ Chapter 3 Stowed and united modes describes ordered sets of values like rows and
structures, and also united modes. It explains how to extract sub rows from a row,
how to select a diagonal in a matrix, et cetera. This chapter also shows how to group
objects into structures. STRING and COMPLEX are introduced.

e Chapter 4 Program structure describes conditional and case constructs that let you
control program flow depending on the value of boolean or integer conditions. It also
describes loops.

* Chapter 5 Procedures and operators explains how to declare procedures and opera-
tors. This chapter brings together recursion and data structures and is a demonstra-
tion of Algol 68’s expressive power. This chapter also describes partial parametrisa-
tion. a68gis one of the few Algol 68 implementations to implement partial parametri-
sation.

¢ Chapter 6 Modes, contexts and coercions explains which modes are well-formed, and
which modes are equivalent. This chapter also summarises the "strengths" that dif-
ferent syntactic positions have and the mode coercions allowed in each one.

* Chapter 7 Transput is about transput which is an Algol 68 term for input-output.
Formatted transput is described in this chapter.

* Chapter 8 Context-free grammar provides a reference for context-free Algol 68 Genie
syntax. This in contrast to the Revised Report, which describes a context-sensitive
syntax for Algol 68.

Part II. Programming with Algol 68 Genie

¢ Chapter 9 Installing and using Algol 68 Genie describes the Algol 68 Genie (a68g),
how to install it on your computer system and how to use the program.

* Chapter 10 Standard prelude and library prelude is an extensive description of the
standard prelude and library prelude. Standard Algol 68 predefines a plethora of
operators and procedures. Algol 68 Genie predefines many operators and procedures
in addition to those required by the standard prelude, that form the library prelude.
This chapter documents these extensions.

XV

LEARNING ALGOL 68 GENIE

Part II1. Example programs

* Chapter 11 Example programs lists a number of a68g programs to demonstrate the
material covered in this publication.

Part IV. Revised report on Algol 68

* Chapters 12—27 constitute a KTEX translation of the revised report on Algol 68. This
report ranks among the difficult publications in computer science.

Part V. Appendices

¢ Appendix A Bibliography has references and suggestions for further reading.

* Appendix B Reporting bugs gives information on how and where to report bugs in
Algol 68 Genie or in this publication.

* Appendix C GNU General Public License is a copy of a68g’s license.

¢ Appendix D GNU Free Documentation License is a copy of the license for parts I, II
and IV of this publication.

xvi

PREFACE

Acknowledgements

{Were | to await perfection, my book would never be finished.
Tai T'ung, 13t century. }

Thanks go to the following people who were kind enough to report bugs and obscuri-
ties, propose improvements, provide documentation, encourage me, or contribute in an-
other way. In alphabetical order: Mark Alford, Bruce Axtens, Ewan Bennett, Lennart
Benschop, Andrey Bergman, Jaap Boender, Bart Botma, Colin Broughton, Brian Calla-
han, Paul Cartwright, Paul Cockshott, Barry Cook, Jiirgen Dabel, Nikita Danilov, Huw
Davies, Neville Dempsey, Koos Dering, Alexey Dokuchaev, J6n Fairbairn, Tomas Fasth,
Sergey Fedorov, Jeremy Frey, Scott Gallaher, Boris Gértner, Jeremy Gibbons, Oleg Girko,
Mayer Goldberg, Shaun Greer, Dick Grune, Keith Halewood, Norman Hardyt, Chap Har-
rison, Jim Heifetz, Andrew Herbert, Chris Hermansen, Lex Herrendorf, Daniel James,
Patrik Jansson, Helmut Jarausch, Trevor Jenkins, James Jones, Rob Jongschaap, Richard
O’Keefe, Henk Keller®t, Wilhelm Kloke, Erwin Koning, Kees Kostert, Has van der Krieken,
Ilya Kurdyukov, Jonathan Lane, Paul Leyland, Karolina Lindqvist, Charles Lindseyt, Patrick
Linnane, Isobel Mailloux, José Marchesi, Neil Matthew, Paul McJones, Lionel Moisan,
Sian Mountbatten, Robert Nix, Raymond Nijssen, Filon Oikonomou, Lawrence D’Oliveiro,
France Pahlplatz, Jason Pandolfo, Janis Papanagnou, Omar Polo, Ben Potter, Lasse Hillerge
Petersen, Steven Pemberton, Charles Penman, Richard Pinch, Hannu-Heiki Puupponen,
Henk Robbers, Pedro Rodrigues de Almeida, Tom Rushworth, Alexej Saushev, Marc Schoold-
ergang, Olaf Seibert, David Sherratt, Rubin Simons, Doaitse Swierstrat, Philip Taylor,
Chris Thomson, Valeriy Ushakov, Robert Uzgalis, Adam Vandenberg, Bruno Verlyck, Na-
cho Vidal Garcia, Merijn Vogel, Eric Voss, Theo Vosse, Peter de Wachter, Andy Walker, Jim
Watt, Glyn Webster, Sam Wilmott, Lee Wittenberg, Thomas Wolff and Tom Zahm.

The Algol 68 Genie project would not be what it is without their help.

Marcel van der Veer
Uithoorn, February 2024

3Henk Keller encouraged me to distribute Algol 68 Genie as free software.

xXvii

LEARNING ALGOL 68 GENIE

Biography

Marcel van der Veer is the author, maintainer and
copyright holder of Algol 68 Genie and its documen-
tation. He holds a MSc in Chemistry from the Univer-
sity of Nijmegen and a PhD in Applied Physics from
the University of Twente.

During his academic years, he worked with AL.GOL68C
and FLACC on IBM and compatible mainframes, and
also with ALGOL68RS on large VAXen. Probably be-
cause chemists and physicists tend to take a prag-
matic approach towards computer science, Marcel
was undeterred to write his own Algol 68 implemen-
tation when Algol 68 compilers were phased out when
computer facilities were decentralised in the 1990’s —
Algol 68 typically was a mainframe language.

Marcel started development of Algol 68 Genie in 1992,
and decided to release it under GNU General Public
License in 2001.

XViil

Informal infroduction to Algol 68

Preliminaries

{Languages take such a time, and so do
all the things one wants to know about.
The Lost Road. John Tolkien. }

1.1 A brief history of programming languages

As to better understand the position of Algol 68 among today’s plethora of programming
languages, we should consider the development of modern programming languages.

In the period 1950-1960 a number of programming languages evolved, the descendants of
which are still widely used. The most notable are Fortran by Backus et al., Lisp by Mc-
Carthy et al., Cobol by Hopper et al. and Algol 60 by a committee of European and Ameri-
can academics including Backus. Algol 60 was particularly influential in the design of later
languages since it introduced nested block structure, lexical scope, and a syntax in Backus-
Naur form (BNF). Nearly all subsequent programming languages have used a variant of
BNF to describe context-free syntax.

At the time of the development of Algol 68, programming languages were required to serve
two purposes. They should provide concepts and statements allowing a precise formal de-
scription of computing processes and facilitate communication between programmers, and
they should provide a tool to solve small to medium-sized problems without specialist help.
The context of Algol 68’s development is perhaps adequately illustrated by a quote! from
Edsger Dijkstra: The intrinsic difficulty of the programming task has never been refuted
... T vividly remember from the late 60’s the tendency to blame the programming languages
in use and to believe in all naivety that, once the proper way of communicating with the
machines had been found, all programming ills would have been cured.

The early procedural languages served above purposes required for them. However, the
evolving need to build complex interactive systems asked for decomposition of a problem
into "natural" components, resulting in object oriented programming languages starting

ITranscript from keynote delivered at the ACM 1984 South Central Regional Conference.
Source: E. W. Dijkstra Archive - the manuscripts of Edsger W. Dijkstra;
https://www.cs.utexas.edu/users/EWD/.

https://www.cs.utexas.edu/users/EWD/

LEARNING ALGOL 68 GENIE

as early as the 1960’s. The object oriented and procedural paradigms each have strengths
and weaknesses and it is not always clear which paradigm is best suited to certain tasks,
even large ones. In numerical and scientific computing for instance, the benefit of object
oriented languages over procedural languages is controversial since in number crunching,
efficiency is a top priority.

The period 1960 to 1980 produced most of the major language paradigms now in use. Al-
gol 68 was conceived as a successor to Algol 60. Its syntax and semantics became even
more orthogonal and were defined by a Van Wijngaarden grammar, a formalism designed
specifically for this purpose. Simula by Nygaard and Dahl was a superset of Algol 60 sup-
porting object oriented programming, while Smalltalk by Kay, Ingalls and Kaehler, was a
newly designed object oriented language. C, the Unix system programming language, was
developed by Ritchie and Thompson at Bell Laboratories between 1969 and 1973. Prolog
by Colmerauer, Roussel, and Kowalski was the first logic programming language. ML by
Milner built a polymorphic type system on top of Lisp, pioneering statically typed func-
tional programming languages. Each of these languages spawned a family of descendants,
and most modern languages count at least one of them in their ancestry. Other important
languages that were developed in this period include Pascal, Forth, Scheme and SQL.

The decade 1980-1990 saw consolidation of imperative languages. Rather than introducing
new paradigms, ideas from the 1970’s were elaborated. C++ combined object oriented pro-
gramming and system programming. The United States government standardised Ada as
a system programming language for defense contractors. Mainly in Japan major efforts
were spent investigating so-called fifth-generation programming languages that incorpo-
rated logic programming constructs. The functional languages community standardised
ML and Lisp. Research in Miranda, a functional language with lazy evaluation, began to
take hold in this decade. An important trend in 1980’s language design was increased focus
on programming large-scale systems through the use of modules, reflected in the develop-
ment of Modula, Ada and ML. Although major new paradigms for imperative languages did
not appear, many researchers elaborated on existing ideas, for example object oriented pro-
gramming, and adapting them to new contexts, for example to distributed systems. Some
other notable languages from the 1980’s are Objective C and Perl.

During the 1990’s recombination and maturation of existing ideas continued. An impor-
tant motivation in this period was productivity. Many rapid application development (RAD)
languages emerged, which usually were descendants of older, typically object oriented, lan-
guages that were equipped with an IDE and garbage collection. These languages included
Object Pascal, Visual Basic, and Java. Java in particular received much attention. More
radical and innovative were new scripting languages. These did not directly descend from
other languages and featured new syntax and liberal incorporation of features. Many con-
sider these scripting languages as more productive than RAD languages, though others will
forward that scripting languages may make small programs simpler but large programs
are more difficult to write and maintain. Nevertheless, scripting languages came to be the
most prominent ones used in connection with the internet. Some important languages that
were developed in the 1990’s are Haskell, Python and PHP.

4

INFORMAL INTRODUCTION TO ALGOL 68

Some current trends in programming languages are mechanisms for security and reliabil-
ity verification, alternative mechanisms for modularity, component-oriented software de-
velopment, constructs to support concurrent and distributed programming, metaprogram-
ming, and integration with databases. The 21" century has to date seen the introduction
of for example C#, Visual Basic.NET and Go.

Algol 68 can be placed in the history of programming languages more or less as in below
diagram. Note that some languages like Euler are not mentioned in this diagram. Some
claim that Ada is Algol 68’s successor but many dispute that. Therefore Ada is mentioned
in above diagram, but there is no line drawn from Algol 68 to Ada. An overview of the
development of Algol, and implementations, can be found at Paul McJones’s page {A}.

1958 Algol 58
|
1960 Algol 60
w

1962 Simula
1963 Algol 60

(Revised)
1967 Simula 67
1968 Algol 68 Algol W

|

1970 Pascal
1976 Algol 68 C

(Revised)
1983 Ada
1984 Ctt

1.2 A brief history of Algol 68

Algol, ALGOrithmic Language, is a family of imperative computer programming languages
which greatly influenced many other languages and became the de facto way algorithms
were described in textbooks and academic works for almost three decades. The two speci-
fications relevant to this publication are Algol 60, revised in 1963, and Algol 68, revised in
1976. Algol 58, originally known as IAL (International Algebraic Language), was an early
member of the Algol family soon superseded by Algol 60. Algol 58 introduced a compound
statement which was restricted to flow of control only and did not relate to lexical scope as
do Algol 60’s blocks.

LEARNING ALGOL 68 GENIE

Ideally, a programming language supports systematic expression of algorithms by offering
appropriate control structures and data structures, and a precise, consistent formal defi-
nition to avoid surprises and portability issues resulting from obscure details that are left
to the discretion of an implementation; for example the number of implementation-defined
features in the C standard is notorious. Members of the Algol family (Algol 60 and Algol 68,
Simula, Pascal and also Ada, et cetera) are considered reasonable approximations of such
"ideal" languages, although all of them have strong points as well as disadvantages. Al-
gol 68 offers appropriate means of abstraction and exemplary control structures that leads
to a good understanding of programming. Its orthogonality results in an economic use of
language constructs making it a beautiful means to write algorithms.

The design of Algol was firmly rooted in the computing community, a contemporary term
for the small but growing international community of computer professionals and scien-
tists. It formed an international platform for discussing programming languages, compiler
construction, program construction, et cetera, and thus Algol had an important part in
erecting computer science as an academic discipline in its own right. Algol 60 was designed
by and for numerical mathematicians; in its day it was the Lingua Franca of computer
science. The language introduced block structure with lexical scope and a concise BNF def-
inition that were appreciated by people with a background in mathematics, but it lacked
compilers and industrial support which gave the advantage to languages as Fortran and
Cobol. To promote Algol, its application range had to be extended. IFIP? Working Group 2.1
Algorithmic Languages and Calculi (WG 2.1), that to this day has continuing responsibility
for Algol 60 and Algol 68, assumed the task of developing a successor to Algol 60.

In the early 1960’s WG 2.1 discussed this successor and in 1965 descriptions of a language
Algol X based on these discussions were invited. This resulted in various language pro-
posals by Wirth, Seegmiiller and Van Wijngaarden?® and other significant contributions by
Hoare and Naur. Van Wijngaarden’s paper Orthogonal design and description of a formal
language* featured a new technique for language design and definition and formed the
basis for what would develop into Algol 68. Many features found in Algol 68 were first
proposed in ALGOL BULLETIN by the original authors of Algol 60 like Peter Naur, by new
members of WG 2.1 like Tony Hoare and Niklaus Wirth, and by many others from the
world-wide computing community.

[Koster 1996] gives a first hand account of the events leading to Algol 68. Algol 68 has
had a large influence on the development of programming languages since it addressed
many issues; for example orthogonality, a strong type system, procedures as types, memory

2IFIP, the International Federation for Information Processing is an umbrella organisation for
national information processing organisations. It was established in 1960 under the auspices of
UNESCO.

3Adriaan van Wijngaarden (1916 - 1987) is considered by many to be the founding father of com-
puter science in the Netherlands. He was co-founder of IFIP and one of the designers of Algol 60
and later Algol 68. As leader of the Algol 68 committee, he made a profound contribution to the field
of programming language design, definition and description.

4Available from [Karl Kleine’s collection].

INFORMAL INTRODUCTION TO ALGOL 68

management, treatment of arrays, a rigorous description of syntax, and parallel processing,
but also ideas that caused debate over the years such as context-sensitive coercions and
quite complicated input-output formatting. After various meetings WG 2.1 had not reached
unanimous consent. Algol 68 was eventually produced by members who wanted a new
milestone in language design. Other members, notably Wirth and Hoare, wanted to shorten
the development cycle by improving Algol 60, which eventually produced Algol W and later
Pascal. Yet other members wrote a brief minority report outlining their view on a new
language; many years later it was commented that no programming language developed
since would have satisfied that vision.

Where Algol 60 syntax is in BNF form, Algol 68 syntax is described by a two-level W-
grammar (W’ for Van Wijngaarden) that can define a context-sensitive grammar. Formally,
in a context-sensitive grammar the left-hand - and right-hand side of a production rule may
be surrounded by a context of terminal and nonterminal symbols. The concept of context-
sensitive grammar was introduced by Chomsky in the 1950’s to describe the syntax of natu-
ral language where a word may or may not be appropriate in a certain position, depending
on context. Analogously, Algol 68 syntax can rigorously define syntactic restrictions; for ex-
ample, demanding that applied-identifiers or operators be declared, or demanding that
modes result in finite objects that require finite coercion, et cetera. To enforce such syntac-
tic constrictions, a context-free syntax must be complemented with extra rules formulated
in natural language to reject incorrect programs. This is less elegant, but defining docu-
ments for programming languages with a context-free grammar do look less complex than
the Algol 68 (revised) report — compare the context-free Algol 68 Genie syntax in chapter 8
to the Revised Report syntax in Part IV.

Probably because of the formal character of the Revised Report, which requires study to
comprehend, the misconception got hold that Algol 68 is a complex language, while in fact
it is rather lean. [Koster 1996] states that the alleged obscurity of description is denied by
virtually anyone who has studied it. Perhaps it only made the impression of being complex
at the time of its introduction around 1970, since one may argue that the specification of
many contemporary languages, including that of modern C, is more complex than that of
Algol 68 [Henney 2018]. Algol 68 was defined in a formal document, first published in
January 1969, and later published in Acta Informatica and also printed in Sigplan Notices.
A Revised Report was issued in 1976; this publication includes a IXTgX translation. Algol 68
was the first major language for which a full formal definition was made before it was
implemented. Though known to be terse, the Revised Report does contain humour solis
sacerdotibus — to quote from [Koster 1996]: The strict and sober syntax permits itself small
puns, as well as a liberal use of portmanteau words. Transput is input or output. Stowed’ is
the word for structured or rowed. Hipping is the coercion for the hop, skip and jump. MOID
is MODE or void. All metanotions ending on ETY have an empty production. Just reading
aloud certain lines of the syntax, slightly raising the voice for capitalized words, conveys a
feeling of heroic and pagan fun (... Such lines cannot be read or written with a straight
face.

Algol 68 was designed for programmers, not for compiler writers, in a time when the field

LEARNING ALGOL 68 GENIE

of compiler construction was not as advanced as it is today. Implementation efforts based
on formal methods generally failed; Algol 68’s context-sensitive grammar required some
invention to parse®; consider for instance x (y, z) that can be either a call or a slice
depending on the mode of x, while x does not need to be declared before being applied.
At the time of Algol 68’s presentation compilers usually were made available on main-
frames by computing centres, which may explain why Algol 68 was popular in locations
rather than areas, for instance Amsterdam, Berlin or Cambridge. It appears that Algol 68
was relatively popular in the United Kingdom, where the ALGOL68R , ALGOL68RS and
ALGOL68C compilers were developed. Hence Algol 68 compilers were few and initiatives to
commercialise them were relatively unsuccessful; for instance the FLACC compiler sold just
twenty-two copies®. In the end industry did not pick it up — the market for new universal
programming languages evidently did not develop as hoped for during the decade in which
the language was developed and implemented. Algol 68 was not widely used, though the
influence it had on the development of computer science is noticeable to this day. Interest-
ingly, two other members of the Algol family, Pascal and Ada, still have their niches but
also did not spread as widely as some may have hoped.

1.3 Notation of syntax

In Part I, a method to describe Algol 68 Genie syntax is used that closely follows the nota-
tion in Part IV, the Algol 68 Revised Report {15:.3.2.2}. However, the syntax rules in Part I
are context-free rules, while the Revised Report describes a context-sensitive W-grammar.
In the Revised Report, production rules are derived from hyper-rules and metaproduction
rules by substitution of notions (generally, bold upper-case words). This substitution mech-
anism is adopted in Part I to introduce a context-free grammar and will be explained in
this section. We will forego the difference between hyper-rules, metaproduction rules and
production rules since Part I does not introduce a context-sensitive grammar. Following
conventions from the Revised Report are adopted:

(i) A syntactic notion is a bold word, with optional hyphens or blank space, for example
integral-denotation. A notion that is to be substituted, generally is a bold upper-
case word, for instance UNITED. To improve legibility syntactic notions are provided
with hyphens, however in production rules they are mostly provided with blanks. Ty-
pographical display features, such as blank space, hyphen, and change to a new line
or new page, are of no significance (but see 244.4.d). For instance, integral denota-
tion means the same as integral-denotation or integraldenotation.

(i1) To write a plural form of a syntactic notion, the letter s is appended to its singular
form, for instance identifiers. Also, the initial letter of a lower-case syntactic notion

5Algol 68 Genie employs a multi-pass scheme to parse Algol 68 [Lindsey 1993] {9.9}.
6Source: Chris Thomson, formerly with Chion Corporation, on comp.lang.misc [1988].

INFORMAL INTRODUCTION TO ALGOL 68

may be capitalised, for instance Formulas that would follow the production rule for
formula.

(iii) Within a production rule, a reference as for example identifier {8.6.2} means that
the notion identifier is defined in section 8.6.2.

(iv) A rule for a syntactic notion consists of the following items, in order:

* an optional asterisk ;
{If a notion is preceded by an optional asterisk, the notion is not used in other
rules and is used as an abstraction for its alternatives, for example:
*operand: monadic operand; dyadic operand.}

* a non-empty bold notion N ;
* a colon-symbol ;

* a non-empty sequence of alternatives for N separated by semicolon-symbols;
within an alternative, a comma-symbol means "is followed by".

* a point-symbol.

General production rules in Part I (but hyper-rules or metaproduction rules in the Revised
Report), are:

e EMPTY:.
This is the empty production.
¢ NOTION list: NOTION; NOTION, comma {8.2} symbol, NOTION list.

* NOTION list proper: NOTION, comma {8.2} symbol, NOTION list.
A list-proper contains at least two NOTIONSs.

* NOTION option: NOTION; EMPTY.

¢ NOTION sequence: NOTION; NOTION, NOTION sequence.

¢ NOTION series: NOTION; NOTION, semicolon {8.2} symbol, NOTION series.
For example, with above rules we can define parameter-list-option by substituting NO-
TION for parameter-list and parameter respectively to obtain:

¢ parameter list option: parameter list; EMPTY.

¢ parameter list: parameter; parameter, comma {8.2} symbol, parameter-list.
From this we see that a parameter-list-option is possibly empty, or possibly contains one
parameter or multiple parameters separated by comma-symbols. Typically, in C and

Pascal documentation, graphic syntax-diagrams are used to describe syntactic constructs;
for instance a parameter-list would be depicted as:

LEARNING ALGOL 68 GENIE

parameter ——

Another example for a production rule is MARKER frame:

* MARKER frame:
insertion option, replicator option, letter s {8.4} option, MARKER;

Viewing MARKER as a parameter, we can for instance deduce the production rule for a
letter-z-frame by substituting MARKER for z-frame:

¢ letter z frame:
insertion option, replicator option, letter s {8.4} option, letter z;

More common production rules encountered in Part I are:

¢ length: long {8.2} symbol sequence; short {8.2} symbol sequence.
¢ qualifier: heap {8.2} symbol; new {8.2} symbol; loc {8.2} symbol.

¢ sign: plus {8.2} symbol, minus {8.2} symbol.

¢ *conditional clause: choice using boolean clause {8.9.1}.

¢ *case clause: choice using integral clause {8.9.1}.

¢ *conformity clause: choice using UNITED {15,.5} clause {8.9.1}.

As indicated earlier, in a context-sensitive grammar, the left-hand - and right-hand side
of a production rule may be surrounded by a context of terminal and nonterminal sym-
bols. This can be clearly recognised in the Revised Report. The Revised Report employs
hyper-rules and metaproduction rules to construct context-sensitive grammars. For in-
stance, unique declaration of all applied tags in a program (identifiers, operators, and so
forth) is ensured via LAYER, PROP and related rules, while well-formed modes are con-
structed via SAFE and related rules. One way to view the matter is as follows: substituting
hyper-rules and metaproduction rules to obtain production rules (which is the machinery
of a two-level grammar) is an ingenious technique to generate a tailored context-sensitive
grammar needed to parse a particular Algol 68 program. Since every correct particular
Algol 68 program has its specific grammar to parse it, a universal Algol 68 grammar, be-
ing the set of all grammars for every possible correct Algol 68 program, would be infinite.
With this in mind, Part IV of this publication is easier to comprehend. In Part I, being an
informal introduction, a context-free grammar is presented and syntactic restrictions are
written in natural language.

10

Basic concepts

{Lisp and Algol, are built around a kernel that
seems as natural as a branch of mathematics.
Metamagical Themas. Douglas Hofstadter. }

2.1 Displays

We start this informal introduction with a feature that contributes to the elegance of Al-
gol 68 programs. It is important to understand that in Algol 68, every construct except
for a declaration yields a value. Imagine a desk calculator where the result of the last op-
eration is visible in the display. Algol 68 works in a similar way - there is a "display" by
which the result of the last operation is made visible to the surrounding statements’. With
this in mind, and if you have programmed before, you may understand next small program
that reads whole numbers from the keyboard and echoes the faculty of each number to the
screen:

OP FAC = (INT k) INT: # A new monadic operator yielding k!#
IF k =0
THEN 1
ELSE k » FAC (k - 1)

FI;

WHILE INT n = read int; n >= 0
DO print ((n, "! =", FAC n))
oD

In above example, the THEN and ELSE branches yield the result of their respective state-
ments; in this case those values are yielded as the result of tail-recursive operator FAC. Also
note the double-parenthesised call of print; the inner parenthesis form a row-display,
which is a denotation for a row, in this case a row of printable values.

In technical terms, the display is the top of the evaluation stack.

11

LEARNING ALGOL 68 GENIE

2.2 Modes and values

Two basic concepts in Algol 68 are mode and value. In other programming languages a
mode is for instance called a type. At the time of development of Algol 68, two notable
scientific-engineering programming languages in use were Fortran and Algol 60. At the
time Fortran 66 let a programmer manipulate values of type INTEGER, REAL, COMPLEX
and LOGICAL, and rows thereof. Algol 60 just offered the types INTEGER, REAL, BOOLEAN
and rows thereof. On the other hand Lisp offered lists, a data structure at the time not yet
supported by the former two languages, for example.

Algol 68 brought this to a next level by introducing next to basic modes INT , REAL , BOOL
and CHAR (with obvious meaning) a mechanism to define other modes by compounding
other modes into rows, structures, unions, and pointers. Moreover Algol 68 offers a method
to define new operators that operate on values of plain or compounded modes. These fea-
tures are common now in many programming languages, but around 1970 those were an
innovation.

Values can be compounded to form text strings, complex numbers, rows and matrices
etcetera. Text, which is a row of characters, is so common that this is the only compounded
mode with a denotation, for instance "denotation™. Algol 68 provides the collateral-
clause to write values for other compounded modes. In chapter 3 this is described in detail;
in brief, a collateral-clause is a parenthesised comma-separated list written as either

(..o0)
or
BEGIN ... END.

For example, the value of a complex number might be written as (0.5, -0.5) which

represents the value § — L.

A typical use of a collateral-clause comes with procedure print that takes as single
argument a row of a union of all printable modes. This causes the Algol 68 idiosyncrasy that
input-output statements working on multiple objects have double-parenthesised calls?, for
example

print (("Step ", n, " yields ", z, new line))

When printing a single object, the collateral-clause is not needed because Algol 68 will
cast a value to a row where context both allows and requires it (see sections 6.5 and 6.4),
So one can write

print (new line)

Algol 68 transput is described in chapter 7.

2Except in ALGOL68C that deviated from the input-ouput specification in this respect.

12

INFORMAL INTRODUCTION TO ALGOL 68

There must of course also be a way to write a ’constant’ value for a mode, which in Algol 68
terminology is a denotation. Like any other language, Algol 68 has common denotations
for all basic modes.

The symbols INT, REAL, BOOL and CHAR are examples of mode-indicants in Algol 68.
A mode-indicant might be called a type identifier in other programming languages. A
mode-indicant is a declarer that specifies a mode. Mode-indicants are written in capi-
tal letters and can be as long as you like though no intervening spaces are allowed; however
a68g allows intervening underscores to be part of a mode-indicant.

In Algol 68 vOID indicates the absence of a value so has different status than a mode®
though there is a single denotation: EMPTY.

2.3 Whole numbers

In Algol 68 whole numbers (integers) have mode INT and are elements of Z, but not the
other way round: not all elements of Z are integers since a computer is a finite object. The
identifier max int from the standard-prelude {10.4} represents the largest representable
integer on the platform on which a program runs:

$ a68g —-p maxint
+9223372036854775807

or

$ a68g -p ’'long max int’
+170141183460469231731687303715884105727

Note that within an identifier white space has no meaning so max int is the same iden-
tifier as maxint. Compare max int to the pre-defined constant INT_MAX in C. Sometimes
one needs to work with integral values larger than max int. To that end Algol 68 Genie
supports modes LONG INT and LONG LONG INT.In a68g, the range of LONG LONG INT is
default circa twice the length of LONG INT but can be made arbitrarily large through the
option --precision {9.6.4}. The respective maximum values for the three integer lengths
available in a68g depend on the platform on which the program was built.

3In the Revised Report, "MOID" is "MODE or void".

13

LEARNING ALGOL 68 GENIE

On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max int 203 1

long max int 2127 _q

long long max int 100 — 1 a68qg library

On other platforms:

Identifier Value Remarks
max int 231 1

long max int 10%° — 1 a68g library
long long max int 100 —1 a68qg library

As in any programming language, one writes the denotation for an integer in Algol 68 as a
sequence of digits 0 to 9. Note that in Algol 68 an integral-denotation is unsigned; it is in
W, not in Z. A sign is a monadic-operator, so if one writes —1 or +1 you will have written
a formula, {2.6}. In standard Algol 68, a denotation for LONG INT must be preceded by
the reserved word LONG and a denotation for LONG LONG INT must be preceded by the
reserved words LONG LONG. The production rule for an integral-denotation is:

* integral denotation:
length {1.3} option, digit {8.3} sequence.

For instance:

a) 6048000 « 6 048 000
b) LONG 266716800000 - LONG 266 716 800 000
¢) LONG LONG

3930061525912861057173624287137506221892737197425280369698987

with value (c) being 3'27. Note that white space has no meaning in an integral-denotation.
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

14

INFORMAL INTRODUCTION TO ALGOL 68

2.4 Identifiers and identity declarations

Suppose one wants to use the value 8 in various parts of a program, then a symbolic ref-
erence to this value is practical. Algol 68 provides an identity-declaration that binds
an identifier to a constant value. Similar constructions in other languages are CONST
declarations in Pascal, PARAMETER statements in Fortran, or #define directives in the C
preprocessor. The identity-declaration for the above mentioned integer would be:

INT measurements done = 8

In Algol 68, white space is only required when concatenating terms introduces ambiguity,
so you could write:

INTmeasurementsdone=8
but it is of course common practice to add white space to improve clarity*.

An identity-declaration is defined as:

¢ identity declaration:
formal declarer {8.11}, identity definition list.

¢ identity definition:
identifier {8.6.2}, equals {8.2} symbol, strong unit {8.9.5}.

A mode-indicant can be used as a formal-declarer. The formal-declarer cannot be
vOID . The difference between a formal-declarer and an actual-declarer will be ex-
plained in chapter 3. An identifier is a sequence of one or more characters which starts
with a lower-case letter and continues with lower-case letters or digits:

¢ identifier:
letter {8.4};
identifier, letter {8.4};
identifier, digit {8.3};
identifier, underscore {8.2} symbol sequence, identifier.

An identifier can be interrupted by spaces or tab characters, but those are ignored. Hence
maxint is the same identifier as max int. a68g allows underscores in identifiers, but
an underscore is part of the identifier unlike white space. Examples of valid identifiers
are:

i « rate 2 pay -« eigen value 3

The following are not identifiers:

4Also in other languages, like Fortran, white space has no meaning. Even so, programmers add
white space to improve legibility, hardly anyone leaves it all out.

15

LEARNING ALGOL 68 GENIE

a) 3d vector
b) particle-energy

¢) rootSymbolPointer

Example (a) starts with a digit, (b) contains a character which is neither a letter nor a digit,
and (c) contains capital letters. An identifier looks like a name in the sense of that word,
but we do not use the term "name" because in Algol 68 the term "name" signifies a value
refering to another one, such as a "variable".

The right hand side of the equals-symbol in an identity-declaration is a unit yielding
a value. The unit can be any piece of program text which yields a value of the mode spec-
ified by the mode-indicant. A denotation is an example of a unit. Other units yielding
integers are the routines® read int , read long int and read long long int that
yield an integral value read from standard input; if you did not redirect input, this would
be your keyboard. Since an identity-declaration is a not a unit and cannot yield a value,
one cannot write:

INT i = INT j = 1
Instead one must write:
INT i = 1; INT j = i

There are two ways of declaring multiple identifiers. The first way is sequential declara-
tion:

INT 1 = 1; INT j = read int

The semicolon-symbol "; " is called the go-on-symbol. One can in principle contract the
above declarations as follows:

INT 1 = 1, j = read int

The comma-symbol separates the two declarations, but this does not mean that i is
declared first, followed by j. It is up to a68g to determine which declaration is elabo-
rated first; they could even be done in parallel. This is known as collateral elaboration,
as opposed to sequential elaboration determined by the go-on-symbol (the semicolon-
symbol). Therefore a risk of combining two identity-declarations as in:

INT one = 1, start = one

is that start is left undefined if one = 1 is elaborated last. When a68g executes above
declaration, it may or may not end in a runtime error since an uninitialised identifier,
in casu one before it is associated with 1, is being used.

5These identifiers come from ALGOL68C .

16

INFORMAL INTRODUCTION TO ALGOL 68

Actually, in Algol 68 all declarations of objects are an identity-declaration though abbre-
viations are allowed since programs would become verbose and terse. You will see this for
instance when reading about variable-declarations and procedure-declarations.

2.5 Real numbers

The term "real number" here is a subtle misnomer since in the mathematical sense real
numbers are not countable and computers cannot represent them exactly because a com-
puter is a finite object. Hence in programming, real numbers are elements of R, but not
the other way round: not all elements of R are real numbers. The common way to treat
real numbers are either as rational numbers with separate numerator and denominator,
as fixed-point numbers which is a rational with a same denominator for all numbers, or as
a floating-point number that stores with a fixed-point number an exponent for the denom-
inator. Floating-point numbers are a compromise between range, precision and processing
time. The optimum for that compromise varies with the application.

As in many programming languages, in Algol 68 real numbers are floating point numbers.
The smallest REAL which a68g can handle is declared in the standard prelude as identi-
fier min real . The largest REAL which a68g can handle is declared as identifier max
real in the standard prelude. Compare these identifiers to their equivalents DBL_MIN
and DBI_MAX in C. Also, there is an identifier small real that gives the smallest value
that when added to 1.0, yields a value larger than 1.0, and thus is a measure of precision.
As with integers, sometimes one needs to use real values with higher precision than offered
by REAL. Algol 68 Genie supports modes LONG REAL and LONG LONG REAL. In a68g the
precision of LONG LONG REAL is default circa twice that of LONG REAL but can be made
arbitrarily large through the option --precision {9.6.4}. Below are the respective limiting
values for the three real lengths available in a68g, which were chosen under the observa-
tion that most multi-precision applications require 20-60 significant digits.

17

LEARNING ALGOL 68 GENIE

On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max real 1.7976931 ... x 10308

long max real 1.1897314 ... x 104932

long long max real 1 x 10999999 a68g library
min real 2.2250738 ... x 107308

long min real 3.3621031 ... x 1074932

long long min real 1 x 107999999 a68g library
small real 2.2204460 ... x 10716

long small real 1.9259299 ... x 10734

long long small real 1x10793 a68g library

On other platforms, LONG REAL is implemented in software:

Identifier Value Remarks
max real 1.7976931 ... x 10308
long max real 1 x 10999999
long long max real 1 x 10999999

a68g library
a68g library

min real 2.2250738... x 107308
long min real 1 x 107999999 a68g library
long long min real 1 x 107999999 a68g library
small real 2.2204460 - - - x 10716
long small real 1x10728 a68g library
long long small real 1x10793 a68g library

A real-denotation consists of digits followed by at least either a fractional part point-
symbol, digit-sequence or an exponent-part. The production rules for a real-denotation
read:

* real denotation:
length {1.3} option, digit {8.3} sequence, exponent part;
length {1.3} option, digit {8.3} sequence option, point {8.2} symbol,
digit {8.3} sequence, exponent part option.

* exponent part:
letter e {8.4} symbol, sign option, digit {8.3} sequence.

Asis common, e is the times ten to the power {8.2} symbol; for example 9e-9 means 9x 1077,
Real-denotations are unsigned, as are integral-denotations, but the exponent can be
preceded by a sign®. In standard Algol 68, a denotation for LONG REAL must be preceded

60ne of the minor difficulties with Algol 68 is that in INT i = -9, the - means the monadic-
operator, which could have been user-defined, whereas in REAL x = le-9, the - is the mathe-
matical minus-sign, even if the monadic-operator - has been re-defined.

18

INFORMAL INTRODUCTION TO ALGOL 68

by the reserved word LONG and a denotation for LONG LONG REAL must be preceded by
the reserved words LONG LONG. Example real-denotations are:

a) .5 « 0.5 « 5.0e-1 =« 5e-1
b) LONG 2.718281828459045235360287471

¢) LONG LONG
0.707106781186547524400844362104849039284835937688474036588339869

with value (b) representing e and value (c) representing %\/5 . As with integral-denotations,
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

Example identity-declarations for values of mode REAL are:

REAL e = 2.718 281 828,
electron charge = 1.6021e-19 # C #,
cost per unit = 25.00 # Euro #

Since a68g admits the indicant DOUBLE for LONG REAL, you could also write:
DOUBLE pi times 2 = 2 * long pi
The value of 7 is declared in the a68g standard prelude as the identifier pi with three

precisions:

® REAL pi = 3.14159265358979
¢ LONG REAL long pi = 3.1415926535897932384626433832795

¢ LONG LONG REAL long long pi =
3.14159265358979323846264338327950288419716939937510582097494459

The length of LONG 1LONG modes can be made arbitrarily large through the option --precision
{9.6.4}. So one can easily print a hundred digits of = through:

$ a68g -p "long long pi" —--precision=100
+3.141592653589793238462643383279502884197169399375105820974944592307816406
28620899862803482534211706798214808651328231e +0

or Euler’s number e, analoguously:

$ a68g -p "long long exp(l)" —--precision=100
+2.718281828459045235360287471352662497757247093699959574966967627724076630
35354759457138217852516642742746639193200306e +0

19

LEARNING ALGOL 68 GENIE

It was mentioned above that in an identity-declaration, the unit must yield a value
of the mode required by the declarer. Now consider this example identity-declaration
where the unit yields a value of mode INT:

REAL z = read int

However, the mode required by the declarer is REAL. Depending on the context, in Al-
gol 68 a value can change mode through a small set of implicit coercions. There are five
contexts in Algol 68: strong, firm, meek, weak and soft. The right-hand side of an identity-
declaration is a strong context. In a strong context, the mode of a unit is always imposed
(in this case by the formal-declarer on the left-hand side). One of the strong coercions is
widening that can for instance widen a value of mode INT to a value of mode REAL.

The procedure print will print a real argument, per default to standard output, as in:
print (pi) + print (LONG 1.732050807568877293527446342)

a68gimplements the routines read real,read long real and read long long real
that yield a real value read from standard input, so you may write:

REAL z = read real;

On a right-hand side of an identity-declaration, the strong context forces the routine
read real to yield a real value by a coercion called deproceduring 6.5.1.

2.6 Formulas

Formulas, often called expressions in other programming languages, consist of operators
working on operands. Operators are encapsulated algorithms that compute a value from
their operands. In chapter 5, we will look at operators in more detail, as well as how
to define new ones. Algol 68 provides a rich set of pre-defined operators in the standard
prelude, described in chapter 10, and one can define more as needed. This chapter describes
the operators in the standard-prelude which can take operands of mode INT, REAL,
BOOL or CHAR. The syntax for a formula reads:

¢ formula:
monadic operator {8.6.3} sequence, monadic operand;
dyadic operand, dyadic operator {8.6.3}, dyadic operand.

* monadic operand:
secondary {8.9.3};

* dyadic operand:
monadic operator {8.6.3} sequence option, monadic operand;
formula.

20

INFORMAL INTRODUCTION TO ALGOL 68

¢ *operand: monadic operand; dyadic operand.

Secondaries {8.9.3} are operands in formulas. Operators come in two forms: monadic-
operators that take one operand and dyadic-operators that take two operands. Operator-
symbols are written as a combination of one or more special symbols, or in upper-case let-
ters like a mode-indicant. A formula can be the unit of an identity-declaration. Thus
the following identity-declarations are both valid:

REAL x = read real + 1.0; REAL y = ABS sin (2 * pi *x x)

White space is not significant in a formula as long as it has a unique meaning. However,
an operator cannot contain white space, in contrast to an identifier. The reason for this is
that in Algol 68, adjacent identifiers have no meaning but adjacent operators do.

A monadic-operator has only one operand, while a dyadic-operator has two oper-
ands. A monadic-operator precedes its operand. For example, the monadic minus -
reverses the sign of its operand: —k. There is, likewise, a monadic + operator which re-
turns its operand: +k. Hence monadic-operators - or + take an operand of mode INT
and yield a value of mode INT. They can also take an operand of mode REAL in which case
they will yield a value of mode REAL. The operator ABS takes an operand of mode INT
and yields the absolute value of mode INT. For example, ABS -1 yields 1. In the standard
prelude is another definition of ABS that takes an operand of mode REAL yielding a value
of mode REAL. When monadic-operators are combined, they are of course elaborated in
right-to-left order. That is, in ABS -1, — acts on 1 to yield —1, and then ABS acts on —1 to
yield 1. Another monadic-operator which takes an INT or REAL operand is STGN which
yields —1 if the operand is negative, 0 if it is zero, and +1 if it is positive. For modes that
have multiple precisions, Algol 68 defines the monadic-operator L.ENG that will increase
precision by one LONG, and the monadic-operator SHORTEN that will decrease precision
by one LONG, for the operand value. Note that a runtime error may result in case the value
of a longer precision cannot be represented in a shorter precision, though REAL values will
be rounded.

It was mentioned that in a strong context, a value of mode INT can be coerced by widen-
ing to a value of mode REAL. But how do we convert a value of mode REAL to a value of
mode INT? In Algol 68 this is impossible by implicit coercion. The reason behind this de-
sign choice in Algol 68 is that the fractional part cannot be implicitly discarded. You must
explicitly state how the conversion should take place. Algol 68 offers monadic operators
to convert a value of mode REAL to a value of mode INT. If one wants to convert a REAL
value to an INT, one must use the operator ROUND or ENTIER . The operator ROUND takes
a single operand of mode REAL and yields an INT whose value is the operand rounded
to the nearest integer. Thus ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule
applies with negative numbers, thus ROUND -3.6 yields —4. Essentially, one gets an inte-
ger result that differs not more than 0.5 from the real value. The operator ENTIER takes a
REAL operand and likewise yields an INT result, but the yield is the largest integer that
is not larger than the real operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2 yields —3.

21

LEARNING ALGOL 68 GENIE

A basic dyadic-operator is addition, +; for instance:
print (read int + 1)

The plus operator + takes two operands of mode INT and yields a sum of mode INT. It is
also defined for two operands of mode REAL yielding a sum of mode REAL :

REAL x = read real + offset

As mentioned, the maximum integer which a68g can represent is max int and the maxi-
mum real is max real. Addition could give a sum which exceeds those two values, which
is called overflow. Algol 68 leaves such case undefined, meaning that an implementation
can choose what to do. a68g will give a runtime error in case of arithmetic overflow, for
example:

1 (print (((1 + max int)

1
a68g: runtime error: 1: INT math error (numerical result out of
range) (detected in [] "SIMPLOUT" closed-clause starting at " ("
in this line).

The dyadic minus operator for subtraction - also takes two operands of mode INT or two
operands of mode REAT and will yield an INT or REAL difference respectively:
INT difference = a - b, REAL distance = end - begin

Since a formula yields a value of a particular mode, one can use it as an operand for
another operator. For example:

INT sum = a + b + c

the order of elaboration being that operands are elaborated collaterally, and then the
operators are applied from left-to-right in this particular example, since the two operators
have the same priority. The times operator * performs arithmetic multiplication and takes
INT operands yielding an INT product. For example:

INT product = 45 % 36

Likewise, » is also defined for multiplication of two values of mode REAL:

REAL pi 2 = 2.0 % pi

We already saw with + and - that a formula can be an operand in another formula:

INT factorial 6 = 2 = 3 = 4 « 5 % 6;
REAL interpolation = slope * x + intercept

In Algol 68, the common precedence of brackets over exponentiation, then division, then
multiplication, and then addition and subtraction, applies and it is implemented by giving
a priority to operators. The priority of multiplication is higher than the priority for addition

22

INFORMAL INTRODUCTION TO ALGOL 68

or subtraction. The priority of the dyadic-operators + and - is 6, and the priority of
the » operator is 7. For example, the value of the formula 2 + 3 % 4 is 14. It is possible
to change the priority of standard operators, but that does not make sense — priority-
declarations are meant to define the priority of new dyadic-operators one introduces.
Every dyadic operator has a priority of between 1 and 9 inclusive, and monadic-operators
bind more tightly than any dyadic-operator. One can of course force priorities by writing
sub expressions in parentheses:

INTm=1+ (2 = 3), # 7 #, n= (1 + 2) » 3 # 9 #

The parentheses in Algol 68 are short-hand for BEGIN ... END and indeed, you could
write a clause in parentheses:

INT one ahead = 1 + (INT k; read (k); k)

Hence there is no special construct for sub expressions in parenthesis that one finds in many
other programming languages. This is a consequence of Algol 68’s famed orthogonality.
There are many examples of orthogonality throughout this publication. Parentheses can
be nested to any depth as long as a68g does not run out of stack space.

On the right-hand side of an identity-declaration, widening is allowed, so the following
declaration is valid:

REAL a = 24 * -36
The formula is elaborated first, and the final INT result is widened’ to REAL.

Algol 68 defines two operator-symbols for division of integers. The operator % takes oper-
ands of mode INT and yields a value of mode INT. It has the alternative representation
OVER . The formula 7 % 3 yields 2, and the formula -7 % 3 yields —2. The priority of %
is 7, the same as multiplication.

The modulo operator MOD yields the remainder after integer division. MOD can alternatively
be written as %+ and its priority is 7, the same as division. Algol 68 defines MOD as follows:
let ¢ € Z be the quotient of a € Z and b € Z,b # 0 and r € W the remainder, such that
a=qxb+r;r <|b then a MOD b yields r. Note that the result of MOD always is a non-
negative number. Therefore the quotient ¢ in the definition of MOD is not consistent with the
definition of OVER