
Package ‘zoomerjoin’
January 31, 2024

Title Superlatively Fast Fuzzy Joins

Version 0.1.4

Description Empowers users to fuzzily-merge data frames with millions or tens of mil-
lions of rows in minutes with low memory usage. The package uses the locality sensitive hash-
ing algorithms developed by Datar, Immorlica, Indyk and Mir-
rokni (2004) <doi:10.1145/997817.997857>, and Broder (1998) <doi:10.1109/SEQUEN.1997.666900> to avoid hav-
ing to compare every pair of records in each dataset, resulting in fuzzy-merges that finish in lin-
ear time.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.0

SystemRequirements Cargo (>= 1.56) (Rust's package manager), rustc

Imports dplyr, tibble, tidyr

Suggests babynames, covr, fuzzyjoin, igraph, knitr, rmarkdown,
stringdist, testthat (>= 3.0.0), tidyverse, purrr,
microbenchmark, profmem

Config/testthat/edition 3

URL https://beniamino.org/zoomerjoin/

BugReports https://github.com/beniaminogreen/zoomerjoin/issues/

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

LazyDataCompression xz

Config/rextendr/version 0.3.1.9000

NeedsCompilation yes

Author Beniamino Green [aut, cre, cph],
Etienne Bacher [ctb],
The authors of the dependency Rust crates [ctb, cph] (see inst/AUTHORS
file for details)

Maintainer Beniamino Green <beniamino.green@yale.edu>

1

https://doi.org/10.1145/997817.997857
https://doi.org/10.1109/SEQUEN.1997.666900
https://beniamino.org/zoomerjoin/
https://github.com/beniaminogreen/zoomerjoin/issues/

2 zoomerjoin-package

Repository CRAN

Date/Publication 2024-01-31 15:30:02 UTC

R topics documented:
zoomerjoin-package . 2
dime_data . 3
em_link . 4
euclidean_anti_join . 5
euclidean_curve . 6
euclidean_full_join . 7
euclidean_inner_join . 8
euclidean_left_join . 10
euclidean_probability . 11
euclidean_right_join . 12
jaccard_anti_join . 13
jaccard_curve . 15
jaccard_full_join . 16
jaccard_hyper_grid_search . 18
jaccard_inner_join . 19
jaccard_left_join . 21
jaccard_probability . 23
jaccard_right_join . 23
jaccard_similarity . 25
jaccard_string_group . 26

Index 28

zoomerjoin-package zoomerjoin: Superlatively Fast Fuzzy Joins

Description

Empowers users to fuzzily-merge data frames with millions or tens of millions of rows in min-
utes with low memory usage. The package uses the locality sensitive hashing algorithms devel-
oped by Datar, Immorlica, Indyk and Mirrokni (2004) doi:10.1145/997817.997857, and Broder
(1998) doi:10.1109/SEQUEN.1997.666900 to avoid having to compare every pair of records in
each dataset, resulting in fuzzy-merges that finish in linear time.

Author(s)

Maintainer: Beniamino Green <beniamino.green@yale.edu> [copyright holder]

Other contributors:

• Etienne Bacher <etienne.bacher@protonmail.com> [contributor]

• The authors of the dependency Rust crates (see inst/AUTHORS file for details) [contributor,
copyright holder]

https://doi.org/10.1145/997817.997857
https://doi.org/10.1109/SEQUEN.1997.666900

dime_data 3

See Also

Useful links:

• https://beniamino.org/zoomerjoin/

• Report bugs at https://github.com/beniaminogreen/zoomerjoin/issues/

dime_data Donors from DIME Database

Description

A set of donor names from the Database on Ideology, Money in Politics, and Elections (DIME).
This dataset was used as a benchmark in the 2021 APSR paper Adaptive Fuzzy String Matching:
How to Merge Datasets with Only One (Messy) Identifying Field by Aaron R. Kaufman and Aja
Klevs, the dataset in this package is a subset of the data from the replication archive of that paper.
The full dataset can be found in the paper’s replication materials here: doi:10.7910/DVN/4031UL.

Usage

dime_data

Format

dime_data:
A data frame with 10,000 rows and 2 columns:

id Numeric ID / Row Number

x Donor Name ...

#’ @source https://www.who.int/teams/global-tuberculosis-programme/data

Author(s)

Adam Bonica

References

doi:10.7910/DVN/4031UL

https://beniamino.org/zoomerjoin/
https://github.com/beniaminogreen/zoomerjoin/issues/
https://doi.org/10.7910/DVN/4031UL
https://www.who.int/teams/global-tuberculosis-programme/data
https://doi.org/10.7910/DVN/4031UL

4 em_link

em_link Fit a Probabilistic Matching Model using Naive Bayes + E.M.

Description

A Rust implementation of the Naive Bayes / Fellegi-Sunter model of record linkage as detailed in
the article "Using a Probabilistic Model to Assist Merging of Large-Scale Administrative Records"
by Enamorado, Fifield and Imai (2019). Takes an integer matrix describing the similarities between
each possible pair of observations, and a vector of initial guesses of the probability each pair is a
match (these can either be set from domain knowledge, or one can hand-label a subset of the data
and leave the rest as p=.5). Iteratively refines these guesses using the Expectation Maximization
algorithm until an optima is reached. for more details, see doi:10.1017/S0003055418000783.

Usage

em_link(X, g, tol = 10^-6, max_iter = 10^3)

Arguments

X an integer matrix of similarities. Must go from 0 (the most disagreement) to the
maximum without any "gaps" or unused levels. As an example, a column with
values 0,1,2,3 is a valid column, but 0,1,2,4 is not as three is omitted

g a vector of initial guesses that are iteratively improved using the EM algorithm
(my personal approach is to guess at logistic regression coefficients and use
them to create the intitial probability guesses). This is chosen to avoid the model
getting stuck in a local optimum, and to avoid the problem of label-switching,
where the labels for matches and non-matches are reversed.

tol tolerance in the sense of the infinity norm. i.e. how close the parameters have to
be between iterations before the EM algorithm terminates.

max_iter iterations after which the algorithm will error out if it has not converged.

Value

a vector of probabilities representing the posterior probability each record pair is a match.

Examples

inv_logit <- function (x) {
exp(x)/(1+exp(x))

}
n <- 10^6
d <- 1:n %% 5 == 0
X <- cbind(

as.integer(ifelse(d, runif(n)<.8, runif(n)<.2)),
as.integer(ifelse(d, runif(n)<.9, runif(n)<.2)),
as.integer(ifelse(d, runif(n)<.7, runif(n)<.2)),

https://doi.org/10.1017/S0003055418000783

euclidean_anti_join 5

as.integer(ifelse(d, runif(n)<.6, runif(n)<.2)),
as.integer(ifelse(d, runif(n)<.5, runif(n)<.2)),
as.integer(ifelse(d, runif(n)<.1, runif(n)<.9)),
as.integer(ifelse(d, runif(n)<.1, runif(n)<.9)),
as.integer(ifelse(d, runif(n)<.8, runif(n)<.01))
)

inital guess at class assignments based on # a hypothetical logistic
regression. Should be based on domain knowledge, or a handful of hand-coded
observations.

x_sum <- rowSums(X)
g <- inv_logit((x_sum - mean(x_sum))/sd(x_sum))

out <- em_link(X, g,tol=.0001, max_iter = 100)

euclidean_anti_join Spatial Anti Join Using LSH

Description

Spatial Anti Join Using LSH

Usage

euclidean_anti_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r = 0.5,
progress = FALSE

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

threshold the distance threshold below which units should be considered a match

n_bands the number of bands used in the LSH algorithm (default is 30). Use this in
conjunction with the band_width to determine the performance of the hashing.

6 euclidean_curve

band_width the length of each band used in the minihashing algorithm (default is 5) Use this
in conjunction with the n_bands to determine the performance of the hashing.

r the r hyperparameter used to govern the sensitivity of the locality sensitive hash,
as described in

progress set to TRUE to print progress

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

X_1 <- matrix(c(seq(0,1,1/(n-1)), seq(0,1,1/(n-1))), nrow=n)
X_2 <- X_1 + .0000001

X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

euclidean_anti_join(X_1, X_2, by = c("V1", "V2"), threshold =.00005)

euclidean_curve Plot S-Curve for a LSH with given hyperparameters

Description

Plot S-Curve for a LSH with given hyperparameters

Usage

euclidean_curve(n_bands, band_width, r, up_to = 100)

euclidean_full_join 7

Arguments

n_bands The number of LSH bands calculated
band_width The number of hashes in each band
r the "r" hyperparameter used to govern the sensitivity of the hash.
up_to the right extent of the x axis.

Value

A plot showing the probability a pair is proposed as a match, given the Jaccard similarity of the two
items.

euclidean_full_join Spatial Full Join Using LSH

Description

Spatial Full Join Using LSH

Usage

euclidean_full_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r = 0.5,
progress = FALSE

)

Arguments

a the first dataframe you wish to join.
b the second dataframe you wish to join.
by a named vector indicating which columns to join on. Format should be the

same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

threshold the distance threshold below which units should be considered a match
n_bands the number of bands used in the LSH algorithm (default is 30). Use this in

conjunction with the band_width to determine the performance of the hashing.
band_width the length of each band used in the minihashing algorithm (default is 5) Use this

in conjunction with the n_bands to determine the performance of the hashing.
r the r hyperparameter used to govern the sensitivity of the locality sensitive hash,

as described in
progress set to TRUE to print progress

8 euclidean_inner_join

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

X_1 <- matrix(c(seq(0,1,1/(n-1)), seq(0,1,1/(n-1))), nrow=n)
X_2 <- X_1 + .0000001

X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

euclidean_full_join(X_1, X_2, by = c("V1", "V2"), threshold =.00005)

euclidean_inner_join Spatial Inner Join Using LSH

Description

Spatial Inner Join Using LSH

Usage

euclidean_inner_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r = 0.5,
progress = FALSE

)

euclidean_inner_join 9

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).

threshold the distance threshold below which units should be considered a match

n_bands the number of bands used in the LSH algorithm (default is 30). Use this in
conjunction with the band_width to determine the performance of the hashing.

band_width the length of each band used in the minihashing algorithm (default is 5) Use this
in conjunction with the n_bands to determine the performance of the hashing.

r the r hyperparameter used to govern the sensitivity of the locality sensitive hash,
as described in

progress set to TRUE to print progress

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

X_1 <- matrix(c(seq(0,1,1/(n-1)), seq(0,1,1/(n-1))), nrow=n)
X_2 <- X_1 + .0000001

X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

euclidean_inner_join(X_1, X_2, by = c("V1", "V2"), threshold =.00005)

10 euclidean_left_join

euclidean_left_join Spatial Left Join Using LSH

Description

Spatial Left Join Using LSH

Usage

euclidean_left_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r = 0.5,
progress = FALSE

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

threshold the distance threshold below which units should be considered a match

n_bands the number of bands used in the LSH algorithm (default is 30). Use this in
conjunction with the band_width to determine the performance of the hashing.

band_width the length of each band used in the minihashing algorithm (default is 5) Use this
in conjunction with the n_bands to determine the performance of the hashing.

r the r hyperparameter used to govern the sensitivity of the locality sensitive hash,
as described in

progress set to TRUE to print progress

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

euclidean_probability 11

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

X_1 <- matrix(c(seq(0,1,1/(n-1)), seq(0,1,1/(n-1))), nrow=n)
X_2 <- X_1 + .0000001

X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

euclidean_left_join(X_1, X_2, by = c("V1", "V2"), threshold =.00005)

euclidean_probability Find Probability of Match Based on Similarity

Description

Find Probability of Match Based on Similarity

Usage

euclidean_probability(distance, n_bands, band_width, r)

Arguments

distance the euclidian distance between the two vectors you want to compare.

n_bands The number of LSH bands used in hashing.

band_width The number of hashes in each band.

r the "r" hyperparameter used to govern the sensitivity of the hash.

Value

a decimal number giving the proability that the two items will be returned as a candidate pair from
the minihash algorithm.

12 euclidean_right_join

euclidean_right_join Spatial Right Join Using LSH

Description

Spatial Right Join Using LSH

Usage

euclidean_right_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r = 0.5,
progress = FALSE

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

threshold the distance threshold below which units should be considered a match

n_bands the number of bands used in the LSH algorithm (default is 30). Use this in
conjunction with the band_width to determine the performance of the hashing.

band_width the length of each band used in the minihashing algorithm (default is 5) Use this
in conjunction with the n_bands to determine the performance of the hashing.

r the r hyperparameter used to govern the sensitivity of the locality sensitive hash,
as described in

progress set to TRUE to print progress

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

jaccard_anti_join 13

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

X_1 <- matrix(c(seq(0,1,1/(n-1)), seq(0,1,1/(n-1))), nrow=n)
X_2 <- X_1 + .0000001
X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

euclidean_right_join(X_1, X_2, by = c("V1", "V2"), threshold =.00005)

jaccard_anti_join Fuzzy anti-join using minihashing

Description

Fuzzy anti-join using minihashing

Usage

jaccard_anti_join(
a,
b,
by = NULL,
block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,
threshold = 0.7,
progress = FALSE,
clean = FALSE,
similarity_column = NULL

)

14 jaccard_anti_join

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

block_by a named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to TRUE to print progress

clean should the strings that you fuzzy join on be cleaned (coerced to lower-case,
stripped of punctuation and spaces)? Default is FALSE

similarity_column

an optional character vector. If provided, the data frame will contain a column
with this name giving the jaccard similarity between the two fields. Extra col-
umn will not be present if anti-joining.

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

jaccard_curve 15

Examples

load baby names data
#install.packages("babynames")
library(babynames)

baby_names <- data.frame(name = tolower(unique(babynames$name))[1:500])
baby_names_sans_vowels <- data.frame(

name_wo_vowels =gsub("[aeiouy]","", baby_names$name)
)

Check the probability two pairs of strings with
similarity .8 will be matched with a band width of 30
and 30 bands using the `jaccard_probability()` function:
jaccard_probability(.8,30,8)
Run the join:
joined_names <- jaccard_anti_join(

baby_names,
baby_names_sans_vowels,
by = c("name"= "name_wo_vowels"),
threshold = .8,
n_bands = 20,
band_width = 6,
n_gram_width = 1,
clean = FALSE # default
)

joined_names

jaccard_curve Plot S-Curve for a LSH with given hyperparameters

Description

Plot S-Curve for a LSH with given hyperparameters

Usage

jaccard_curve(n_bands, band_width)

Arguments

n_bands The number of LSH bands calculated

band_width The number of hashes in each band

Value

A plot showing the probability a pair is proposed as a match, given the Jaccard similarity of the two
items.

16 jaccard_full_join

Examples

Plot the probability two pairs will be matched as a function of their
jaccard similarity, given the hyperparameters n_bands and band_width.
jaccard_curve(40,6)

jaccard_full_join Fuzzy full-join using minihashing

Description

Fuzzy full-join using minihashing

Usage

jaccard_full_join(
a,
b,
by = NULL,
block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,
threshold = 0.7,
progress = FALSE,
clean = FALSE,
similarity_column = NULL

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

block_by a named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

jaccard_full_join 17

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to TRUE to print progress

clean should the strings that you fuzzy join on be cleaned (coerced to lower-case,
stripped of punctuation and spaces)? Default is FALSE

similarity_column

an optional character vector. If provided, the data frame will contain a column
with this name giving the jaccard similarity between the two fields. Extra col-
umn will not be present if anti-joining.

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

load baby names data
#install.packages("babynames")
library(babynames)

baby_names <- data.frame(name = tolower(unique(babynames$name))[1:500])
baby_names_sans_vowels <- data.frame(

name_wo_vowels =gsub("[aeiouy]","", baby_names$name)
)

Check the probability two pairs of strings with
similarity .8 will be matched with a band width of 30
and 30 bands using the `jaccard_probability()` function:
jaccard_probability(.8,30,8)
Run the join:
joined_names <- jaccard_full_join(

baby_names,
baby_names_sans_vowels,
by = c("name"= "name_wo_vowels"),
threshold = .8,

18 jaccard_hyper_grid_search

n_bands = 20,
band_width = 6,
n_gram_width = 1,
clean = FALSE # default
)

joined_names

jaccard_hyper_grid_search

Help Choose the Appropriate LSH Hyperparameters

Description

Runs a grid search to find the hyperparameters that will achieve an (s1,s2,p1,p2)-sensitive locality
sensitive hash. A locality sensitive hash can be called (s1,s2,p1,p2)-sensitive if to strings with a
similarity less than s1 have a less than p1 chance of being compared, while two strings with similar-
ity s2 have a greater than p2 chance of being compared. As an example, a (.1,.7,.001,.999)-sensitive
LSH means that strings with similarity less than .1 will have a .1% chance of being compared, while
strings with .7 similarity have a 99.9% chance of being compared.

Usage

jaccard_hyper_grid_search(s1 = 0.1, s2 = 0.7, p1 = 0.001, p2 = 0.999)

Arguments

s1 the s1 parameter (the first similaity).

s2 the s2 parameter (the second similarity, must be greater than s1).

p1 the p1 parameter (the first probability).

p2 the p2 parameter (the second probability, must be greater than p1).

Value

a named vector with the hyperparameters that will meet the LSH criteria, while reducing runitme.

Examples

Help me find the parameters that will minimize runtime while ensuring that
two strings with similarity .1 will be compared less than .1% of the time,
strings with .8 similaity will have a 99.95% chance of being compared:
jaccard_hyper_grid_search(.1,.9,.001,.995)

jaccard_inner_join 19

jaccard_inner_join Fuzzy inner-join using minihashing

Description

Fuzzy inner-join using minihashing

Usage

jaccard_inner_join(
a,
b,
by = NULL,
block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,
threshold = 0.7,
progress = FALSE,
clean = FALSE,
similarity_column = NULL

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

block_by a named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

20 jaccard_inner_join

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to TRUE to print progress
clean should the strings that you fuzzy join on be cleaned (coerced to lower-case,

stripped of punctuation and spaces)? Default is FALSE
similarity_column

an optional character vector. If provided, the data frame will contain a column
with this name giving the jaccard similarity between the two fields. Extra col-
umn will not be present if anti-joining.

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

load baby names data
#install.packages("babynames")
library(babynames)

baby_names <- data.frame(name = tolower(unique(babynames$name))[1:500])
baby_names_sans_vowels <- data.frame(

name_wo_vowels =gsub("[aeiouy]","", baby_names$name)
)

Check the probability two pairs of strings with
similarity .8 will be matched with a band width of 30
and 30 bands using the `jaccard_probability()` function:
jaccard_probability(.8,30,8)
Run the join:
joined_names <- jaccard_inner_join(

baby_names,
baby_names_sans_vowels,
by = c("name"= "name_wo_vowels"),
threshold = .8,
n_bands = 20,
band_width = 6,
n_gram_width = 1,
clean = FALSE # default
)

joined_names

jaccard_left_join 21

jaccard_left_join Fuzzy left-join using minihashing

Description

Fuzzy left-join using minihashing

Usage

jaccard_left_join(
a,
b,
by = NULL,
block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,
threshold = 0.7,
progress = FALSE,
clean = FALSE,
similarity_column = NULL

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

block_by a named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

22 jaccard_left_join

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to TRUE to print progress
clean should the strings that you fuzzy join on be cleaned (coerced to lower-case,

stripped of punctuation and spaces)? Default is FALSE
similarity_column

an optional character vector. If provided, the data frame will contain a column
with this name giving the jaccard similarity between the two fields. Extra col-
umn will not be present if anti-joining.

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

load baby names data
#install.packages("babynames")
library(babynames)

baby_names <- data.frame(name = tolower(unique(babynames$name))[1:500])
baby_names_sans_vowels <- data.frame(

name_wo_vowels =gsub("[aeiouy]","", baby_names$name)
)

Check the probability two pairs of strings with
similarity .8 will be matched with a band width of 30
and 30 bands using the `jaccard_probability()` function:
jaccard_probability(.8,30,8)
Run the join:
joined_names <- jaccard_left_join(

baby_names,
baby_names_sans_vowels,
by = c("name"= "name_wo_vowels"),
threshold = .8,
n_bands = 20,
band_width = 6,
n_gram_width = 1,
clean = FALSE # default
)

joined_names

jaccard_probability 23

jaccard_probability Find Probability of Match Based on Similarity

Description

This is a port of the lsh_probability function from the textreuse package, with arguments changed
to reflect the hyperparameters in this package. It gives the probability that two strings of jaccard
similarity similarity will be matched, given the chosen bandwidth and number of bands.

Usage

jaccard_probability(similarity, n_bands, band_width)

Arguments

similarity the similarity of the two strings you want to compare

n_bands The number of LSH bands used in hashing.

band_width The number of hashes in each band.

Value

a decimal number giving the probability that the two items will be returned as a candidate pair from
the minhash algorithm.

Examples

Find the probability two pairs will be matched given they have a
jaccard_similarity of .8,
band width of 5, and 50 bands:
jaccard_probability(.8,5,50)

jaccard_right_join Fuzzy right-join using minihashing

Description

Fuzzy right-join using minihashing

https://docs.ropensci.org/textreuse/reference/lsh_probability.html
https://cran.r-project.org/package=textreuse

24 jaccard_right_join

Usage

jaccard_right_join(
a,
b,
by = NULL,
block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,
threshold = 0.7,
progress = FALSE,
clean = FALSE,
similarity_column = NULL

)

Arguments

a the first dataframe you wish to join.

b the second dataframe you wish to join.

by a named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

block_by a named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to TRUE to print progress

jaccard_similarity 25

clean should the strings that you fuzzy join on be cleaned (coerced to lower-case,
stripped of punctuation and spaces)? Default is FALSE

similarity_column

an optional character vector. If provided, the data frame will contain a column
with this name giving the jaccard similarity between the two fields. Extra col-
umn will not be present if anti-joining.

Value

a tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

load baby names data
#install.packages("babynames")
library(babynames)

baby_names <- data.frame(name = tolower(unique(babynames$name))[1:500])
baby_names_sans_vowels <- data.frame(

name_wo_vowels =gsub("[aeiouy]","", baby_names$name)
)

Check the probability two pairs of strings with
similarity .8 will be matched with a band width of 30
and 30 bands using the `jaccard_probability()` function:
jaccard_probability(.8,30,8)
Run the join:
joined_names <- jaccard_right_join(

baby_names,
baby_names_sans_vowels,
by = c("name"= "name_wo_vowels"),
threshold = .8,
n_bands = 20,
band_width = 6,
n_gram_width = 1,
clean = FALSE # default
)

joined_names

jaccard_similarity Calculate jaccard_similarity of two character vectors

Description

Calculate jaccard_similarity of two character vectors

Usage

jaccard_similarity(a, b, ngram_width = 2)

26 jaccard_string_group

Arguments

a the first character vector

b the first character vector

ngram_width the length of the shingles / ngrams used in the similarity calculation

Value

a vector of jaccard similarities of the strings

Examples

jaccard_similarity(c("the quick brown fox","jumped over the lazy dog"),
c("the quck bron fx","jumped over hte lazy dog"))

jaccard_string_group Fuzzy String Grouping Using Minhashing

Description

Performs fuzzy string grouping in which similar strings are assigned to the same group. Uses the
fastgreedy.community community detection algorithm from the igraph package to create the
groups. Must have igraph installed in order to use this function.

Usage

jaccard_string_group(
string,
n_gram_width = 2,
n_bands = 45,
band_width = 8,
threshold = 0.7,
progress = FALSE

)

Arguments

string a character you wish to perform entity resolution on.

n_gram_width the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

n_bands the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

jaccard_string_group 27

band_width the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

threshold the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

• the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

progress set to true to report progress of the algorithm

Value

a string vector storing the group of each element in the original input strings. The input vector is
grouped so that similar strings belong to the same group, which is given a standardized name.

Examples

string <- c("beniamino", "jack", "benjamin", "beniamin",
"jacky", "giacomo", "gaicomo")

jaccard_string_group(string, threshold = .2, n_bands=90, n_gram_width=1)

Index

∗ datasets
dime_data, 3

dime_data, 3

em_link, 4
euclidean_anti_join, 5
euclidean_curve, 6
euclidean_full_join, 7
euclidean_inner_join, 8
euclidean_left_join, 10
euclidean_probability, 11
euclidean_right_join, 12

jaccard_anti_join, 13
jaccard_curve, 15
jaccard_full_join, 16
jaccard_hyper_grid_search, 18
jaccard_inner_join, 19
jaccard_left_join, 21
jaccard_probability, 23
jaccard_right_join, 23
jaccard_similarity, 25
jaccard_string_group, 26

zoomerjoin (zoomerjoin-package), 2
zoomerjoin-package, 2

28

	zoomerjoin-package
	dime_data
	em_link
	euclidean_anti_join
	euclidean_curve
	euclidean_full_join
	euclidean_inner_join
	euclidean_left_join
	euclidean_probability
	euclidean_right_join
	jaccard_anti_join
	jaccard_curve
	jaccard_full_join
	jaccard_hyper_grid_search
	jaccard_inner_join
	jaccard_left_join
	jaccard_probability
	jaccard_right_join
	jaccard_similarity
	jaccard_string_group
	Index

