## ---- echo = FALSE, message=FALSE--------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(zalpha) ## ----------------------------------------------------------------------------- library(zalpha) data(snps) ## This is what the dataset looks like: snps ## ----------------------------------------------------------------------------- results<-Zalpha(snps$bp_positions,3000,as.matrix(snps[,3:12])) results plot(results$position,results$Zalpha) ## ----------------------------------------------------------------------------- Zalpha(snps$bp_positions,3000,as.matrix(snps[,3:12]),X=c(500,1000)) ## ----------------------------------------------------------------------------- snps$cM_distances ## ----------------------------------------------------------------------------- data(LDprofile) LDprofile ## ----------------------------------------------------------------------------- Zalpha_expected(snps$bp_positions, 3000, snps$cM_distances, LDprofile$bin, LDprofile$rsq) ## ----------------------------------------------------------------------------- Zalpha_rsq_over_expected(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq) Zalpha_log_rsq_over_expected(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq) Zalpha_Zscore(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq, LDprofile$sd) Zalpha_BetaCDF(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$Beta_a, LDprofile$Beta_b) ## ----------------------------------------------------------------------------- results<-Zbeta(snps$bp_positions,3000,as.matrix(snps[,3:12])) results plot(results$position,results$Zbeta) ## ----------------------------------------------------------------------------- Zbeta_expected(snps$bp_positions, 3000, snps$cM_distances, LDprofile$bin, LDprofile$rsq) Zbeta_rsq_over_expected(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq) Zbeta_log_rsq_over_expected(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq) Zbeta_Zscore(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$rsq, LDprofile$sd) Zbeta_BetaCDF(snps$bp_positions, 3000, as.matrix(snps[,3:12]), snps$cM_distances, LDprofile$bin, LDprofile$Beta_a, LDprofile$Beta_b) ## ----------------------------------------------------------------------------- Zalpha_all(snps$bp_positions,3000,as.matrix(snps[,3:12])) ## ----------------------------------------------------------------------------- create_LDprofile(snps$cM_distances,as.matrix(snps[,3:12]),bin_size = 0.001,beta_params = TRUE) ## ----------------------------------------------------------------------------- ## Generate three chromosomes of data - cM distances and SNP values chrom1_cM_distances<-snps$cM_distances chrom1_snp_values<-as.matrix(snps[,3:12]) chrom2_cM_distances<-snps$cM_distances chrom2_snp_values<-as.matrix(snps[,3:12]) chrom3_cM_distances<-snps$cM_distances chrom3_snp_values<-as.matrix(snps[,3:12]) ## create a list of the cM distances cM_distances_list<-list(chrom1_cM_distances,chrom2_cM_distances,chrom3_cM_distances) ## create a list of SNP value matrices snp_values_list<-list(chrom1_snp_values,chrom2_snp_values,chrom3_snp_values) ## create the LD profile using the lists as the dist and x parameters create_LDprofile(cM_distances_list,snp_values_list,bin_size = 0.001,beta_params = TRUE)