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contr.wsum Contrast matrices

Description

Returns a category-weighted contrast matrix

Usage

contr.wsum(x, weights = rep.int(1.0, length(x)), sparse = FALSE)

Arguments

x a factor vector

weights a vector of weights with the same length as x.

sparse ogical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

Details

Computes a contrast matrix similar to contr.sum. The reference category is however weighted by
the sum of weights of the other categories.

Value

A matrix with nlevels(x) rows and nlevels(x)- 1 columns.
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Author(s)

Reto Burgin

See Also

contr.sum

Examples

x <- factor(rep(LETTERS[1:3], c(10, 20, 30)))
contr.wsum(x) # standard call
contr.wsum(x, sparse = TRUE) # using a sparse matrix

fvcm Bagging and Random Forests based on tvcm

Description

Bagging (Breiman, 1996) and Random Forest (Breiman, 2001) ensemble algorithms for tvcm.

Usage

fvcm(..., control = fvcm_control())

fvcm_control(maxstep = 10, minsize = 10,
folds = folds_control("subsampling", K = 100),
mtry = 5, sctest = FALSE, alpha = 1.0,
mindev = 0.0, verbose = TRUE, ...)

fvcolmm(..., family = cumulative(), control = fvcolmm_control())

fvcolmm_control(maxstep = 10, minsize = 20,
folds = folds_control("subsampling", K = 100),
mtry = 5, sctest = TRUE, alpha = 1.0,
nimpute = 1, verbose = TRUE, ...)

fvcglm(..., family, control = fvcglm_control())

fvcglm_control(maxstep = 10, minsize = 10,
folds = folds_control("subsampling", K = 100),
mtry = 5, mindev = 0,
verbose = TRUE, ...)
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Arguments

... for fvcm, fvcolmm and fvcglm arguments to be passed to tvcm. This includes
at least the arguments formula, data and family, see examples below. For
fvcm_control further control arguments to be passed to tvcm_control. For
fvcolmm_control and fvcglm_control further control arguments to be passed
to fvcm_control

.

control a list of control parameters as produced by fvcm_control.

family the model family, e.g., binomial or cumulative.

maxstep integer. The maximum number of steps for when growing individual trees.

folds a list of parameters to control the extraction of subsets, as created by folds_control.

mtry positive integer scalar. The number of combinations of partitions, nodes and
variables to be randomly sampled as candidates in each iteration.

sctest logical scalar. Defines whether coefficient constancy tests should be used for the
variable and node selection in each iteration.

mindev, alpha these parameters are merely specified to disable the default stopping rules for
tvcm. See also tvcm_control for details.

minsize, nimpute
special parameter settings for fvcolmm. The minimum node size is set to the
default of tvcolmm. The default nimpute deactivates the imputation procedure
in cases of unbalanced data.

verbose logical. Should information about the fitting process be printed to the screen?

Details

Implements the Bagging (Breiman, 1996) and Random Forests (Breiman, 2001) ensemble algo-
rithms for tvcm. The method consist in growing multiple trees by using tvcm and aggregating the
fitted coefficient functions in the scale of the predictor function. To enable bagging, use mtry = Inf
in fvcm_control.

fvcolmm and fvcglm are the extensions for tvcolmm and tvcglm.

fvcm_control is a wrapper of tvcm_control and the arguments indicated specify modified de-
faults and parameters for randomizing split selections. Notice that, relative to tvcm_control, also
the cv prune arguments are internally disabled. The default arguments for alpha and maxoverstep
essentially disable the stopping rules of tvcm, where the argument maxstep (the number of itera-
tions i.e. the maximum number of splits) fully controls the stopping. The parameter mtry controls
the randomization for selecting combinations of partitions, nodes and variables for splitting. The
default of mtry = 5 is arbitrary.

Value

An object of class fvcm.

Author(s)

Reto Burgin
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References

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New
York, USA: Springer-Verlag.

Burgin, R. A. (2015). Tree-based methods for moderated regression with application to longitudinal
data. PhD thesis. University of Geneva.

See Also

fvcm-methods, tvcm, glm, olmm

Examples

## ------------------------------------------------------------------- #
## Dummy example:
##
## Bagging 'tvcm' on the artificially generated data 'vcrpart_3'. The
## true coefficient function is a sinus curve between -pi/2 and pi/2.
## The parameters 'maxstep = 3' and 'K = 5' are chosen to restrict the
## computations.
## ------------------------------------------------------------------- #

## simulated data
data(vcrpart_3)

## setting parameters
control <-

fvcm_control(maxstep = 3,
folds = folds_control("subsampling", K = 5, 0.5, seed = 3))

## fitting the forest
model <- fvcm(y ~ vc(z1, by = x1), data = vcrpart_3,

family = gaussian(), control = control)

## plot the first two trees
plot(model, "coef", 1:2)

## plotting the partial dependency of the coefficient for 'x1'
plot(model, "partdep")

fvcm-methods Methods for fvcm objects

Description

Standard methods for computing on fvcm objects.
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Usage

## S3 method for class 'fvcm'
oobloss(object, fun = NULL, ranef = FALSE, ...)

## S3 method for class 'fvcm'
plot(x, type = c("default", "coef",

"simple", "partdep"),
tree = NULL, ask = NULL, ...)

## S3 method for class 'fvcm'
predict(object, newdata = NULL,

type = c("link", "response", "prob", "class", "coef", "ranef"),
ranef = FALSE, na.action = na.pass, verbose = FALSE, ...)

Arguments

object, x an object of class fvcm.

fun the loss function. The default loss function is defined as the sum of the deviance
residuals. For a user defined function fun, see the examples of oobloss.tvcm.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the training data are used.

type character string indicating the type of plot or prediction. See plot.tvcm or
predict.tvcm. "response" and "prob" are identical.

tree integer vector. Which trees should be plotted.

ask logical. Whether an input should be asked before printing the next panel.

ranef logical scalar or matrix indicating whether predictions should be based on ran-
dom effects. See predict.olmm.

na.action function determining what should be done with missing values for fixed effects
in newdata. The default is to predict NA: see na.pass.

verbose logical scalar. If TRUE verbose output is generated during the validation.

... further arguments passed to other methods.

Details

oobloss.fvcm estimates the out-of-bag loss based on predictions of the model that aggregates only
those trees in which the observation didn’t appear (cf. Hastie et al, 2001, sec. 15). The prediction
error is computed as the sum of prediction errors obtained with fun, which are the deviance residuals
by default.

The plot and the prediction methods are analogous to plot.tvcm resp. predict.tvcm. Note that the
plot options mean and conf.int for type ="coef" are not available (and internally set to FALSE).

Further undocumented, available methods are fitted, print and ranef. All these latter methods
have the same arguments as the corresponding default methods.
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Value

The methods fitted.fvcm and predict.fvcm return an object of class numeric or matrix, de-
pending on the used model or the specification of the argument type. See also fitted.tvcm.

The oobloss.fvcm method returns the output of the loss function defined by fun. This is a single
numeric by default. See also oobloss.

The plot.fvcm method returns NULL.

The ranef.fvcm method returns an object of class matrix with values for the random effects. See
also ranef.olmm and ranef.

Author(s)

Reto Burgin

References

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New
York, USA: Springer-Verlag.

See Also

fvcm, tvcm-methods

Examples

## ------------------------------------------------------------------- #
## Dummy example 1:
##
## Fitting a random forest tvcm on artificially generated ordinal
## longitudinal data. The parameters 'maxstep = 1' and 'K = 2' are
## chosen to restrict the computations.
## ------------------------------------------------------------------- #

## load the data

data(vcrpart_1)

## fit and analyse the model

control <-
fvcolmm_control(mtry = 2, maxstep = 1,

folds = folds_control(type = "subsampling", K = 2, prob = 0.75))

model.1 <-
fvcolmm(y ~ -1 + wave + vc(z3, z4, by = treat, intercept = TRUE) + re(1|id),

family = cumulative(), subset = 1:100,
data = vcrpart_1, control = control)
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## estimating the out of bag loss
suppressWarnings(oobloss(model.1))

## predicting responses and varying coefficients for subject '27'
subs <- vcrpart_1$id == "27"

## predict coefficients
predict(model.1, newdata = vcrpart_1[subs,], type = "coef")

## marginal response prediction
predict(model.1, vcrpart_1[subs,], "response", ranef = FALSE)

## conditional response prediction
re <- matrix(5, 1, 1, dimnames = list("27", "(Intercept)"))
predict(model.1, vcrpart_1[subs,], "response", ranef = re)
predict(model.1, vcrpart_1[subs,], "response", ranef = 0 * re)

## predicting in-sample random effects
head(predict(model.1, type = "ranef"))

## fitted responses (marginal and conditional prediction)
head(predict(model.1, type = "response", ranef = FALSE))
head(predict(model.1, type = "response", ranef = TRUE))

## ------------------------------------------------------------------- #
## Dummy example 2:
##
## Fitting a random forest tvcm on artificially generated normally
## distributed data. The parameters 'maxstep = 3' and 'K = 3' are
## chosen to restrict the computations and 'minsize = 5' to obtain at
## least a few splits given the small sample size.
## ------------------------------------------------------------------- #

data(vcrpart_2)

## fit and analyse the model

control <- fvcm_control(mtry = 1L, minsize = 5, maxstep = 3,
folds_control("subsampling", K = 3, 0.75))

model.2 <- fvcglm(y ~ -1 + vc(z1, z2, by = x1, intercept = TRUE) + x2,
data = vcrpart_2,
family = gaussian(), subset = 1:50,control = control)

## estimating the out of bag loss
suppressWarnings(oobloss(model.2))

## predict the coefficient for individual cases
predict(model.2, vcrpart_2[91:100, ], "coef")
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movie Movie critics

Description

Movie critics of the Variety magazine. The data were previously used to fit adjacent-categories
mixed models by Hartzl et al. (2001)

Usage

data(movie)

Format

A data frame with 372 observations on 93 movies. Three vectors contain information on

movie movie ID.

critic ordinal response on a 3 category scale, "Con" < "Mixed" < "Pro".

review critics, "Medved", "Ebert", "Siskel" and "Medved".

Source

The data are tabulated in Hartzel et al. (2001).

References

Hartzel, J., A. Agresti and B. Caffo (2001). Multinomial Logit Random Effect Models, Statistical
Modelling 1(2), 81–102.

olmm Fitting ordinal and nominal two-stage linear mixed models

Description

Fits different types of two-stage linear mixed models for longitudinal (or clustered) ordinal (or
multinomial) responses. O ne-stage models are also allowed. Random effects are assumed to be
multivariate normal distributed with expectation 0. At the time being, cumulative link models with
the logit, probit or cauchy link, the baseline-category logit and the adjacent-category logit model are
implemented. Coefficients can be category-specific (i.e. non-proportional odds effects) or global
(i.e. proportional odds, or parallel effects).

The function solves the score function for coefficients of the marginal likelihood by using Gauss-
Hermite quadrature (e.g., Hedeker; 1994). Random effects are predicted by their expectation (see
Hartzl et al.; 2001). Standard deviations of parameter estimates are, by default, based on the ex-
pected Fisher-information matrix.
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Usage

cumulative(link = c("logit", "probit", "cauchy"))
adjacent(link = "logit")
baseline(link = "logit")

olmm(formula, data, family = cumulative(),
weights, subset, na.action = na.omit,
offset, contrasts, control = olmm_control(), ...)

Arguments

formula a symbolic description of the model. This should be something like
y ~ ce(x1) + ge(x2) +re(1 + ge(w2) | id)

where ce(x1) specifies that the predictor x1 has a category-specific i.e. non-
proportional odds effect and ge(x2) that the predictor x2 has global i.e. propor-
tional odds fixed effect, see ge, resp. ce. Random effects are specified within
the re term, where the variable id above behind the vertical bar | defines the
subject i.e. cluster factor. Notice that only one subject factor is allowed. See
details.

data an optional data frame with the variables in formula. By default the variables
are taken from the environment from which olmm is called.

family an family.olmm object produced by cumulative, adjacent or baseline.

weights a numeric vector of weights with length equal the number of observations. The
weights should be constant for subjects.

offset a matrix specifying the offset separately for each predictor equation, of which
there are the number of categories of the response minus one.

subset, na.action, contrasts
further model specification arguments as in lm.

control a list of control parameters produced by olmm_control.

link character string. The name of the link function.

... arguments to be passed to control.

Details

The function can be used to fit simple ordinal two-stage mixed effect models with up to 3-4 random
effects. For models with higher dimensions on random effects, the procedure may not convergence
(cf. Tutz; 1996). Coefficients for the adjacent-category logit model are extracted via coefficient
transformation (e.g. Agresti; 2010).

The three implemented families are defined as follows: cumulative is defined as the link of the sum
of probabilities of lower categories, e.g., for link = "logit", the logit of the sum of probabilities
of lower categories. adjacent is defined as the logit of the probability of the lower of two adjacent
categories. baseline is defined as the logit of the probability of a category with reference to the
highest category. Notice that the estimated coefficients of cumulative models may have the opposite
sign those obtained with alternative software.
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For alternative fitting functions, see for example the functions clmm of ordinal, nplmt of package
mixcat, DPolmm of package DPpackage, lcmm of package lcmm, MCMCglmm of package MCM-
Cglmm or OrdinalBoost of package GMMBoost.
The implementation adopts functions of the packages statmod (Novomestky, 2012) and matrixcalc
(Smyth et al., 2014), which is not visible for the user. The authors are grateful for these codes.

The formula argument specifies the model to be fitted. Categorical regression models distin-
guish between global effects (or proportional-odds effects), which are defined with ge terms, and
category-specific effects, which are defined by ce terms. For undefined terms, the function will use
ge terms. Notice that this default does not necessarily yield interpretable outputs. For example,
for the baseline model you may use only ce terms, which must be specified manually manually.
See the example below. For cumulative models at present it is not possible to specifiy ce for
the random effects component because the internal, unconstraint integration would yield unusable
predictor values.

Value

olmm returns an object of class olmm. cumulative, adjacent and baseline yield an object of class
family.olmm. The olmm class is a list containing the following components:

env environment in which the object was built.

frame the model frame.

call the matched call to the function that created the object (class "call").

control a list of class olmm_control produced by olmm_control.

formula the formula of the call.

terms a list of terms of the fitted model.

family an object of class family.olmm that specifies that family of the fitted model.

y (ordered) categorical response vector.

X model matrix for the fixed effects.

W model matrix for the random effects.

subject a factor vector with grouping levels.

subjectName variable name of the subject vector.

weights numeric observations weights vector.

weights_sbj numeric weights vector of length N.

offset numeric offset matrix

xlevels (only where relevant) a list of levels of the factors used in fitting.

contrasts (only where relevant) a list of contrasts used.

dims a named integer of dimensions. Some of the dimensions are n is the number
of observations, p is the number of fixed effects per predictor and q is the total
number of random effects.

fixef a matrix of fixed effects (one column for each predictor).

ranefCholFac a lower triangular matrix. The cholesky decomposition of the covariance matrix
of the random effects.
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coefficients a numeric vector of several fitted model parameters

restricted a logical vector indicating which elements of the coefficients slot are re-
stricted to an initial value at the estimation.

eta a matrix of unconditional linear predictors of the fixed effects without random
effects.

u a matrix of orthogonal standardized random effects (one row for each subject
level).

logLik_obs a numeric vector of log likelihood value (one value for each observation).

logLik_sbj a numeric vector of log likelihood values (one value for each subject level).

logLik a numeric value. The log likelihood of the model.

score_obs a matrix of observation-wise partial derivates of the marginal log-likelihood
equation.

score_sbj a matrix of subject-wise partial derivates of the marginal log-likelihood equa-
tion.

score a numeric vector of (total) partial derivates of the log-Likelihood function.

info the information matrix (default is the expected information).

ghx a matrix of quadrature points for the Gauss-Hermite quadrature integration.

ghw a matrix of weights for the Gauss-Hermite quadrature integration.

ranefElMat a transformation matrix

optim a list of arguments for calling the optimizer function.

control a list of used control arguments produced by olmm_control.

output the output of the optimizer (class "list").

Author(s)

Reto Burgin

References

Agresti, A. (2010). Analysis of Ordinal Categorical Data (2 ed.). New Jersey, USA: John Wiley &
Sons.

Hartzel, J., A. Agresti and B. Caffo (2001). Multinomial Logit Random Effect Models, Statistical
Modelling 1(2), 81–102.

Hedeker, D. and R. Gibbons (1994). A Random-Effects Ordinal Regression Model for Multilevel
Analysis, Biometrics 20(4), 933–944.

Tutz, G. and W. Hennevogl (1996). Random Effects in Ordinal Regression Models, Computational
Statistics & Data Analysis 22(5), 537–557.

Tutz, G. (2012). Regression for Categorical Data. New York, USA: Cambridge Series in Statistical
and Probabilistic Mathematics.

Novomestky, F. (2012). matrixcalc: Collection of Functions for Matrix Calculations. R package
version 1.0-3. URL https://CRAN.R-project.org/package=matrixcalc

Smyth, G., Y. Hu, P. Dunn, B. Phipson and Y. Chen (2014). statmod: Statistical Modeling. R
package version 1.4.20. URL https://CRAN.R-project.org/package=statmod

https://CRAN.R-project.org/package=matrixcalc
https://CRAN.R-project.org/package=statmod
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See Also

olmm-methods, olmm_control, ordered

Examples

## ------------------------------------------------------------------- #
## Example 1: Schizophrenia
##
## Estimating the cumulative mixed models of
## Agresti (2010) chapters 10.3.1
## ------------------------------------------------------------------- #

data(schizo)

model.10.3.1 <-
olmm(imps79o ~ tx + sqrt(week) + re(1|id),

data = schizo, family = cumulative())

summary(model.10.3.1)

## ------------------------------------------------------------------- #
## Example 2: Movie critics
##
## Estimating three of several adjacent-categories
## mixed models of Hartzl et. al. (2001)
## ------------------------------------------------------------------- #

data(movie)

## model with category-specific effects for "review"
model.24.1 <- olmm(critic ~ ce(review) + re(1|movie, intercept = "ce"),

data = movie, family = adjacent())

summary(model.24.1)

olmm-control Control parameters for olmm.

Description

Various parameters that control aspects for olmm.

Usage

olmm_control(fit = c("nlminb", "ucminf", "optim"),
doFit = TRUE, numGrad = FALSE,
numHess = numGrad, nGHQ = 7L,
start = NULL, restricted = NULL, verbose = FALSE, ...)
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Arguments

fit character string. The name of the function to be used for the optimization. Can
be one of "nlminb", "ucminf", "optim"

doFit logical scalar. When FALSE an unfitted olmm object is returned.

numGrad logical scalar indicating whether the score function should be retrieved numeri-
cally.

numHess logical scalar. Indicates whether the Hess matrix for the variance-covariance
matrix should be estimated numerically, which is an approximation of the ob-
served Fisher information. Must be TRUE if numGrad is TRUE. See details.

nGHQ a positive integer specifying the number of quadrature points for the approxima-
tion of the marginal Likelihood by numerical integration.

start a named numeric vector of initial values for the parameters. The parameter must
be named in exactly in the way as they appear when the model is fitted.

restricted a character vector of names of coefficients to be restricted to the initial values.
The argument is ignored in case of adjacent category models.

verbose logical scalar. If TRUE verbose output is generated during the optimization of the
parameter estimates.

... further arguments to be passed to fit.

Details

Initial values may decrease the computation time and avoid divergence. The start argument ac-
cepts a vector with named elements according to the column names of the model.matrix. At the
time being, initial values for adjacent-categories models must be transformed into the baseline-
category model form.

Notice that an additional argument control, e.g., control = list(trace = 1), can be passed ac-
cess control parameters of the optimizers. For arguments, see ucminf, nlminb or optim.

Value

A list of class olmm_control containing the control parameters.

Author(s)

Reto Burgin

See Also

olmm

Examples

olmm_control(doFit = FALSE)
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olmm-gefp Methods for score processes of olmm objects

Description

Methods to extract and pre-decorrelate the (negative) marginal maximum likelihood observation
scores and compute the standardized cumulative score processes of a fitted olmm object.

Usage

olmm_estfun(x, predecor = FALSE, control = predecor_control(),
nuisance = NULL, ...)

predecor_control(impute = TRUE, seed = NULL,
symmetric = TRUE, center = FALSE,
reltol = 1e-6,
maxit = 250L, minsize = 1L,
include = c("observed", "all"),
verbose = FALSE, silent = FALSE)

olmm_gefp(object, scores = NULL, order.by = NULL, subset = NULL,
predecor = TRUE, parm = NULL, center = TRUE, drop = TRUE,
silent = FALSE, ...)

Arguments

x, object a fitted olmm object.

predecor logical scalar. Indicates whether the within-subject correlation of the estimating
equations should be removed by a linear transformation. See details.

control a list of control parameter as produced by predecor_control.

nuisance integer vector. Defines the coefficients which are regarded as nuisance and there-
fore omitted from the transformation.

impute logical scalar. Whether missing values should be replaced using imputation.

seed an integer scalar. Specifies the random number used for the set.seed call before
the imputation. If set to NULL, set.seed is not processed.

symmetric logical scalar. Whether the transformation matrix should be symmetric.

minsize integer scalar. The minimum number of observations for which entries in the
transformation should be computed. Higher values will lead to lower accuracy
but stabilize the computation.

reltol convergence tolerance used to compute the transformation matrix.

maxit the maximum number of iterations used to compute the transformation matrix.

silent logical scalar. Should the report of warnings be suppressed?
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include logical scalar. Whether the transformation matrix should be computed based on
the scores corresponding to observations (option "observed") or on all scores
(option "all"), including the imputed values.

verbose logical scalar. Produces messages.

scores a function or a matrix. Function to extract the estimating equations from object
or a matrix representing the estimating equations. If NULL (default), the olmm_estfun
function will be used with argument predecor and additional arguments from
....

order.by a numeric or factor vector. The explanatory variable to be used to order the
entries in the estimating equations. If set to NULL (the default) the observations
are assumed to be ordered.

subset logical vector. For extracts the subset of the estimating equations to be used.

parm integer, logical or a character vector. Extracts the columns of the estimating
equations.

center logical scalar. TRUE subtracts, if necessary, the column means of the estimating
equations.

drop logical. Whether singularities should be handled automatically (otherwise sin-
gularities yield an error).

... arguments passed to other functions. olmm_gefp passes these arguments to
scores if scores is a function.

Details

Complements the estfun method of the package sandwich and the gefp function of the package
strucchange for olmm objects. olmm_estfun allows to pre-decorrelate the intra-individual correla-
tion of observation scores, see the argument predecor. The value returned by olmm_gefp may be
used for testing coefficient constancy regarding an explanatory variable order.by by the sctest
function of package strucchange, see the examples below.

If predecor = TRUE in olmm_estfun, a linear within-subject transformation is applied that removes
(approximately) the intra-subject correlation from the scores. Backgrounds are provided by Burgin
and Ritschard (2014a).

Given a score matrix produced by olmm_estfun, the empirical fluctuation process can be computed
by olmm_gefp. See Zeileis and Hornik (2007). olmm_gefp provides with subset and parm argu-
ments specifically designed for nodewise tests in the tvcm algorithm. Using subset extracts the
partial fluctuation process of the selected subset. Further, center = TRUE makes sure that the partial
fluctuation process (starts and) ends with zero.

Value

predecor_control returns a list of control parameters for computing the pre-decorrelation trans-
formation matrix. olmm_estfun returns a matrix with the estimating equations and olmm_gefp a
list of class class "gefp".

Author(s)

Reto Burgin
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References

Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter Instability, Statistica
Neerlandica, 61(4), 488–508.

Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal
Ordinal Responses. Computational Statistics & Data Analysis, 86, 65–80.

See Also

olmm

Examples

## ------------------------------------------------------------------- #
## Dummy example :
##
## Testing coefficient constancy on 'z4' of the 'vcrpart_1' data.
## ------------------------------------------------------------------- #

data(vcrpart_1)

## extract a unbalanced subset to show to the full functionality of estfun
vcrpart_1 <- vcrpart_1[-seq(1, 100, 4),]
subset <- vcrpart_1$wave != 1L ## obs. to keep for fluctuation tests
table(table(vcrpart_1$id))

## fit the model
model <- olmm(y ~ treat + re(1|id), data = vcrpart_1)

## extract and pre-decorrelate the scores
scores <- olmm_estfun(

model, predecor = TRUE,
control = predecor_control(verbose = TRUE))

attr(scores, "T") # transformation matrix

## compute the empirical fluctuation process
fp <- olmm_gefp(model, scores, order.by = vcrpart_1$z4)

## process a fluctuation test
library(strucchange)
sctest(fp, functional = catL2BB(fp))

olmm-methods Methods for olmm objects

Description

Standard methods for computing on olmm objects.
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Usage

## S3 method for class 'olmm'
anova(object, ...)

## S3 method for class 'olmm'
coef(object, which = c("all", "fe"), ...)

## S3 method for class 'olmm'
fixef(object, which = c("all", "ce", "ge"), ...)

## S3 method for class 'olmm'
model.matrix(object, which = c("fe", "fe-ce", "fe-ge",

"re", "re-ce", "re-ge"), ...)

## S3 method for class 'olmm'
neglogLik2(object, ...)

## S3 method for class 'olmm'
ranef(object, norm = FALSE, ...)

## S3 method for class 'olmm'
ranefCov(object, ...)

## S3 method for class 'olmm'
simulate(object, nsim = 1, seed = NULL,

newdata = NULL, ranef = TRUE, ...)

## S3 method for class 'olmm'
terms(x, which = c("fe-ce", "fe-ge", "re-ce", "re-ge"), ...)

## S3 method for class 'olmm'
VarCorr(x, sigma = 1., ...)

## S3 method for class 'olmm'
weights(object, level = c("observation", "subject"), ...)

Arguments

object, x an olmm object.

which optional character string. For coef and fixef, it indicates whether "all" co-
efficients, the fixed effects "fe", the category-specific fixed effects "ce" (i.e.
non-proportional odds) or the global fixed effects "ge" (i.e. proportional odds)
should be extracted. For model.matrix it indicates whether the model matrix
of the fixed- ("fe") or the random effects ("re") should be extracted.

level character string. Whether the results should be on the observation level (level
= "observation") or on the subject level (level = "subject").

norm logical. Whether residuals should be divided by their standard deviation.
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nsim number of response vectors to simulate. Defaults to 1.

seed an object specifying if and how the random number generator should be initial-
ized. See simulate

newdata a data frame with predictor variables.

ranef either a logical or a matrix (see predict.olmm). Whether the simulated re-
sponses should be conditional on random effects. If TRUE, the newdata data
frame must contain the subject identification variable. Further, if all subjects in
newdata are in object, the simulation will be based on the estimated random
effects as obtained with ranef. If any subject in newdata is not in object the
random effects are simulated.

sigma ignored but obligatory argument from original generic.

... potential further arguments passed to methods.

Details

anova implements log-likelihood ratio tests for model comparisons, based on the marginal likeli-
hood. At the time being, at least two models must be assigned.

neglogLik2 returns the marginal maximum likelihood of the fitted model times minus 2.

ranefCov extracts the variance-covariance matrix of the random effects. Similarly, VarCorr ex-
tracts the estimated variances, standard deviations and correlations of the random effects.

resid extracts the residuals of Li and Sheperd (2012). By default, the marginal outcome distribution
is used to compute these residuals. The conditional residuals can be computed by assigning ranef
= TRUE as a supplementary argument.

simulate simulates ordinal responses based on the input model.

Further, undocumented methods are deviance, extractAIC, fitted, formula, getCall, logLik,
model.frame, nobs, update, vcov.

The anova implementation is based on codes of the lme4 package. The authors are grateful for
these codes.

Value

The anova.olmm method returns an object of class anova, see also anova.

The coef.olmm, coefficients.olmm, fixef, fixef.glm and fixef.olmm methods return named
numeric vectors. See also coef and coefficients.

The deviance.olmm method returns a single numeric, see also deviance.

The formula.olmm method extracts the model formula, which is an object of class formula. See
also formula.

The getCall.olmm method extracts the call for fitting the model, which is an object of class call.
See also call.

The logLik.olmm method returns an object of class logLik, which is a single numeric with a few
attributes. See also logLik.

The neglogLik2 and neglogLik2.olmm methods return a single numeric.

The model.frame.olmm and model.matrix.olmm methods return the model frame and the model
matrix of the olmm object. See also model.frame and model.matrix.
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The ranef and ranef.olmm methods return a matrix with the estimated random effects.

The ranefCov and ranefCov.olmm methods return an object of class matrix. The VarCorr and
VarCorr.olmm methods return an object of class VarCorr.olmm. print.VarCorr.olmm returns an
object of class VarCorr.olmm.

The resid.olmm and residuals.olmm methods return a numeric vector.

The simulate.olmm method returns a data.frame including simulated responses based on the
input model.

The terms.olmm method returns an object of class terms. See also terms.

The update.olmm method will update and (by default) re-fit a model. It returns an object of class
olmm. See also update.

The vcov.olmm method extracts a matrix with the variances and covariances of the fixed effects of
the model. See also vcov.

The weights.olmm method extracts a numeric vector with the model weights. See also weights.

Author(s)

Reto Burgin

References

Agresti, A. (2010). Analysis of Ordinal Categorical Data (2 ed.). New Jersey, USA: John Wiley &
Sons.

Tutz, G. (2012). Regression for Categorical Data. New York, USA: Cambridge Series in Statistical
and Probabilistic Mathematics.

Li, C. and B. E. Sheperd (2012). A New Residual for Ordinal Outcomes, Biometrika, 99(2), 437–
480.

Bates, D., M. Maechler, B. M. Bolker and S. Walker (2015). Fitting Linear Mixed-Effects Models
Using lme4, Journal of Statistical Software, 67(1), 1–48.

See Also

olmm, predict.olmm, olmm_gefp

Examples

## --------------------------------------------------------- #
## Example: Schizophrenia (see also example of 'olmm')
## --------------------------------------------------------- #

data(schizo)

schizo <- schizo[1:181,]
schizo$id <- droplevels(schizo$id)

## anova comparison
## ----------------
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## fit two alternative models for the 'schizo' data
model.0 <- olmm(imps79o ~ tx + sqrt(week) + re(1|id), schizo)
model.1 <- olmm(imps79o ~ tx + sqrt(week)+tx*sqrt(week)+re(1|id),schizo)
anova(model.0, model.1)

## simulate responses
## ------------------

## simulate responses based on estimated random effects
simulate(model.0, newdata = schizo[1, ], ranef = TRUE, seed = 1)
simulate(model.0, newdata = schizo[1, ], seed = 1,

ranef = ranef(model.0)[schizo[1, "id"],,drop=FALSE])
## simulate responses based on simulated random effects
newdata <- schizo[1, ]
newdata$id <- factor("123456789")
simulate(model.0, newdata = newdata, ranef = TRUE)

## other methods
## -------------

coef(model.1)
fixef(model.1)
head(model.matrix(model.1, "fe-ge"))
head(weights(model.1))
ranefCov(model.1)
head(resid(model.1))
terms(model.1, "fe-ge")
VarCorr(model.1)
head(weights(model.1, "subject"))

olmm-predict Predict outcome probabilities and responses for olmm objects

Description

fitted and predict method for olmm objects. The function implements mainly the prediction
methods of Skrondal and Rabe-Hesketh (2009).

Usage

## S3 method for class 'olmm'
fitted(object, ...)

## S3 method for class 'olmm'
predict(object, newdata = NULL,

type = c("link", "response", "prob", "class", "ranef"),
ranef = FALSE, na.action = na.pass, ...)
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Arguments

object a fitted olmm object.

newdata data frame for which to evaluate predictions.

type character string. type = "response" and type = "prob" yield response prob-
abilities, type = "class" the response category with highest probability and
type = "link" the linear predictor matrix. type = "ranef" yields the predicted
random effects, see ranef.olmm.

ranef logical or numeric matrix. See details.

na.action function determining what should be done with missing values for fixed effects
in newdata. The default is to predict NA: see na.pass.

... optional additional parameters. Includes offset and subset.

Details

If type = "link" and ranef = FALSE, the fixed effects components are computed. The random
effect components are ignored.

If type = "link" and ranef = TRUE, the fixed effect components plus the random effect components
are computed. The function will look for whether random coefficients are available for the subjects
(i.e. clusters) in newdata. If so, it extracts the corresponding random effects as obtained by ranef.
For new subjects in newdata the random effects are set to zero. If newdata does not contain a
subject vector, the random effects are set to zero.

If type = "link" and ranef is a matrix, the fixed effect components plus the random effect compo-
nents with the random coefficients from the assigned matrix are computed. Notice that newdata
should contain a subject vector to assign the random coefficients. This prediction method is,
amongst others, proposed in Skrondal and Rabe-Hesketh (2009), Sec. 7.1.

The two options type = "response" and type = "prob" are identical and type = "class" extracts
the response category with the highest probability. Hence, the prediction mechanism is the same
for all three options.

Given newdata contains a subject vector, type = "response" combined with ranef = FALSE yields
for new subjects the population-averaged response probabilities (Skrondal and Rabe-Hesketh, Sec.
7.2) and for existing subjects the cluster-averaged prediction (Skrondal and Rabe-Hesketh 2009,
Sec. 7.3). If no subject vector is assigned the function assumes that all subjects are new and
therefore yields the population-averaged response probabilities (Skrondal and Rabe-Hesketh 2009,
Sec. 7.2).

The option type = "response" combined with ranef = TRUE works equivalent to type = "link"
combined with ranef = TRUE.

If the model does not contain random effects, the argument ranef is ignored.

Value

A matrix or a vector of predicted values or response probabilities.

Note

The method can not yet handle new categories in categorical predictors and will return an error.
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Author(s)

Reto Burgin

References

Skrondal, A., S. Rabe-Hesketh (2009). Prediction in Multilevel Generalized Linear Models. Jour-
nal of the Royal Statistical Society A, 172(3), 659–687.

See Also

olmm, olmm-methods

Examples

## ------------------------------------------------------------------- #
## Example: Schizophrenia
## ------------------------------------------------------------------- #

data(schizo)

## omit subject 1103 and the last observations of 1104 and 1105
subs <- c(1:4, 8, 11)

dat.train <- schizo[-subs, ] # training data
dat.valid <- schizo[ subs, ] # test data

## fit the model
model <- olmm(imps79o ~ tx + sqrt(week) + tx:sqrt(week) + re(1|id), dat.train)

## prediction on the predictor scale
## ---------------------------------

## random effects are set equal zero
predict(model, newdata = dat.valid, type = "link", ranef = FALSE)

## .. or equally with self-defined random effects
ranef <- matrix(0, 3, 1)
rownames(ranef) <- c("1103", "1104", "1105")
predict(model, newdata = dat.valid, type = "link", ranef = ranef)

## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "link", ranef = TRUE)

## prediction on the response scale
## --------------------------------

## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "response", ranef = FALSE)
predict(model, newdata = dat.valid, type = "prob", ranef = FALSE) # .. or, equally
predict(model, newdata = dat.valid, type = "class", ranef = FALSE)

## treat all individuals as new (subject vector is deleted)
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predict(model, newdata = dat.valid[,-1], type = "response", ranef = FALSE)

## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "response", ranef = TRUE)

## use self defined random effects
ranef <- matrix(0, 3, 1)
rownames(ranef) <- c("1103", "1104", "1105")
predict(model, newdata = dat.valid, type = "response", ranef = ranef)

## predict random effects
## ----------------------

head(predict(model, type = "ranef"))
head(ranef(model)) # .. or, equally

olmm-summary Printing and summarizing olmm objects

Description

Generates summary results of a fitted olmm object.

Usage

## S3 method for class 'olmm'
summary(object, etalab = c("int", "char", "eta"),

silent = FALSE, ...)

## S3 method for class 'olmm'
print(x, etalab = c("int", "char", "eta"), ...)

Arguments

object, x a fitted olmm object.

etalab character. Whether category-specific effects should be labeled by integers of
categories (default), the labels of the categories or the index of the predictor.

silent logical: should a warning be reported if the computation of the covariance ma-
trix for the estimated coefficients failed.

... additional arguments passed to print.

Value

The summary method returns a list of class "summary.olmm".

Author(s)

Reto Burgin
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See Also

olmm, olmm-methods

Examples

## ------------------------------------------------------------------- #
## Dummy example:
##
## Printing the summary of a model on artificially generated data.
## ------------------------------------------------------------------- #

data(vcrpart_1)

model <- olmm(y ~ wave + z4:treat + re(1|id), vcrpart_1, subset = 1:60)

print(model, digits = 2)

summary(model, digits = 2)

otsplot Time-series plot for longitudinal ordinal data

Description

Plots multiple ordinal sequences in a x (usually time) versus y (response variable) scatterplot. The
sequences are displayed by jittered frequency-weighted parallel lines.

Usage

## Default S3 method:
otsplot(x, y, subject, weights, groups,

control = otsplot_control(), filter = NULL,
main, xlab, ylab, xlim, ylim, ...)

otsplot_control(cex = 1, lwd = 1/4, col = NULL,
hide.col = grey(0.8), seed = NULL,
lorder = c("background", "foreground") ,
lcourse = c("upwards", "downwards"),
grid.scale = 1/5, grid.lwd = 1/2,
grid.fill = grey(0.95), grid.col = grey(0.6),
layout = NULL, margins = c(5.1, 4.1, 4.1, 3.1),
strip.fontsize = 12, strip.fill = grey(0.9),
pop = TRUE, newpage = TRUE, maxit = 500L)

otsplot_filter(method = c("minfreq", "cumfreq", "linear"), level = NULL)
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Arguments

x a numeric or factor vector for the x axis, e.g. time.
y an ordered factor vector for the y axis.
subject a factor vector that identifies the subject, i.e., allocates elements in x and y to

the subject i.e. observation unit.
weights a numeric vector of weights of length equal the number of subjects.
groups a numeric or factor vector of group memberships of length equal the number

of subjects. When specified, one panel is generated for each distinct membership
value.

control control parameters produced by otsplot_control, such as line colors or the
scale of translation zones.

filter an otsplot_filter object which defines line coloring options. See details.
main, xlab, ylab title and axis labels for the plot.
xlim, ylim the x limits c(x1, x2) resp. y limits (y1,y2).
... additional undocumented arguments.
cex expansion factor for the squared symbols.
lwd expansion factor for line widths. The expansion is relative to the size of the

squared symbols.
col color palette vector for line coloring.
hide.col Color for ordinal time-series filtered-out by the filter specification in otsplot.
seed an integer specifying which seed should be set at the beginning.
lorder line ordering. Either "background" or "foreground".
lcourse Method to connect simultaneous elements with the preceding and following

ones. Either "upwards" (default) or "downwards".
grid.scale expansion factor for the translation zones.
grid.lwd expansion factor for the borders of translation zones.
grid.fill the fill color for translation zones.
grid.col the border color for translation zones.
strip.fontsize fontsize of titles in stripes that appear when a groups vector is assigned.
strip.fill color of strips that appear when a groups vector is assigned.
layout an integer vector c(nr, nc) specifying the number of rows and columns of the

panel arrangement when the groups argument is used.
margins a numeric vector c(bottom, left, top, right) specifying the space on the

margins of the plot. See also the argument mar in par.
pop logical scalar. Whether the viewport tree should be popped before return.
newpage logical scalar. Whether grid.newpage() should be called previous to the plot.
maxit maximal number of iteration for the algorithm that computes the translation ar-

rangement.
method character string. Defines the filtering function. Available are "minfreq", "cumfreq"

and "linear".
level numeric scalar between 0 and 1. The frequency threshold for the filtering meth-

ods "minfreq" and "cumfreq".
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Details

The function is a scaled down version of the seqpcplot function of the TraMineR package, im-
plemented in the grid graphics environment.

The filter argument serves to specify filters to fade out less interesting patterns. The filtered-out
patterns are displayed in the hide.col color. The filter argument expects an object produced by
otsplot_filter.

otsplot_filter("minfreq", level = 0.05) colors patterns with a support of at least 5% (within
a group). otsplot_filter("cumfreq", level = 0.75) highlight the 75% most frequent patterns
(within group). otsplot_filter("linear") linearly greys out patterns with low support.

The implementation adopts a color palette which was originally generated by the colorspace pack-
age (Ihaka et al., 2013). The authors are grateful for these codes.

Value

otsplot returns an object of class otsplot.

otsplot_control returns an object of class otsplot_control and otsplot_filter an object of
class otsplot_filter. Both these object types are specifically designed as input arguments of
otsplot.

Author(s)

Reto Burgin and Gilbert Ritschard

References

Burgin, R. and G. Ritschard (2014). A Decorated Parallel Coordinate Plot for Categorical Longitu-
dinal Data, The American Statistician 68(2), 98–103.

Ihaka, R., P. Murrell, K. Hornik, J. C. Fisher and A. Zeileis (2013). colorspace: Color Space Manip-
ulation. R package version 1.2-4. URL https://CRAN.R-project.org/package=colorspace.

Examples

## ------------------------------------------------------------------- #
## Dummy example:
##
## Plotting artificially generated ordinal longitudinal data
## ------------------------------------------------------------------- #

## load the data
data(vcrpart_1)
vcrpart_1 <- vcrpart_1[1:40,]

## plot the data
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id)

## using 'groups'
groups <- rep(c("A", "B"), each = nrow(vcrpart_1) / 2L)
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,

groups = groups)

https://CRAN.R-project.org/package=colorspace
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## color series with supports over 30%
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,

filter = otsplot_filter("minfreq", level = 0.3))

## highlight the 50% most frequent series
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,

filter = otsplot_filter("cumfreq", level = 0.5))

## linearly grey out series with low support
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,

filter = otsplot_filter("linear"))

## subject-wise plot
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y,

subject = vcrpart_1$id, groups = vcrpart_1$id)

PL Effect of parental leave policy

Description

Data to analyze the effect of the 1990 Austrian parental leave reform on fertility and postbirth labor
market careers. The data originate from the Austrian Social Security Database (ASSD) and where
prepared by Lalive and Zweimueller (2009). The sample includes 6’180 women giving a childbirth
(the first birth recorded in the ASSD data) between June and July 1990 and were eligible to benefit
from the parental leave program.

Usage

data(PL)

Format

A data frame with 6’180 observations on the following variables

uncb3 binary. Additional birth 0-36 months after child birth.

uncb10 binary. Additional birth 0-120 months after child birth.

uncj3 binary. Return-to-work 0-36 months after child birth.

uncj10 numeric. Return-to-work 0-120 months after child birth.

pbexp10 numeric. Employment (months/yr), 37-120 months after child birth.

pbinc_tot10 numeric. Earnings (EUR/month), 37-120 months after child birth.

pbexp3 numeric. Employment (months/yr), 0-36 months after child birth.

pbinc_tot3 numeric. Earnings (EUR/month), 0-36 months after child birth.

ikar3 numeric. Length of parental leave of the first year after birth.

ikar4 numeric. Length of parental leave of the second year after birth.
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july binary treatment variable. Indicates whether the child considered (the first recorded in the
ASSD data) was born in June 1990 or in July 1990.

bd child’s birthday.

workExp years in employment prior to birth.

unEmpl years in unemployment prior to birth.

zeroLabEarn factor. Whether women has earnings at birth.

laborEarnings numeric. Earnings at birth.

employed factor. Whether the woman was employed in 1989.

whiteCollar factor. Whether woman is white collar worker.

wage numeric. Daily 1989 earnings.

age ordered factor. Age.

industry, industry.SL factor. Industry where woman worked.

region, region.SL factor. The region where the woman lives.

Details

The data are described in Lalive and Zweimueller (2009).

Source

Austrian Social Security Database (ASSD). The data set is also available from https://sites.
google.com/site/rafaellalive/research

References

Lalive, R. and J. Zweimueller (2009). Does Parental Leave Affect Fertility and Return-to-Work?
Evidence from Two Natural Experiments. The Quarterly Journal of Economics 124(3), 1363–1402.

poverty Poverty in Switzerland

Description

Poverty measurements of elderly people (older than the Swiss legal retirement age) in Switzerland.
The data are the (complete) subsample of participants of the canton Valais of the Vivre-Leben-
Vivere (VLV) survey data.

Usage

data(poverty)

https://sites.google.com/site/rafaellalive/research
https://sites.google.com/site/rafaellalive/research
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Format

A data frame with 576 observations on the following variables

Poor binary response variable on whether the person is considered as poor or not. 0 = no and 1 =
yes.

Canton the canton where the person lives. All individuals origin from the canton Wallis.

Gender whether person is a male or a female.

AgeGroup to which age group the person belongs to.

Edu ordered 3-category measurement on the persons education.

CivStat civil status.

NChild number of children.

Working whether the person is still working (even though all persons are in the legal retirement
age).

FirstJob 5-category classification of the person’s first job.

LastJob 5-category classification of the person’s last job.

Origin whether the person origins from Switzerland or a foreign country.

SocMob whether and how the person has changed his social status over the life span.

RetirTiming timing of the retirement relative to the legal retirement age.

ProfCar 4-category classification of the professional carrier. Possible are "full employment",
"missing / early retirement", "start and stop" and "stop and restart". The classifi-
cation was retrieved from a longitudinal cluster analysis on the professional carriers in Gabriel
et. al. (2014).

Pension 5-category classification of the pension plan. Number refer to the Swiss pension three-
pillar system.

TimFirstChild timing of first child relative to the average timing of the first child of the same age
group.

Details

Poverty is defined by a threshold of 2400 Swiss francs per person in the household. Specifically,
the poverty variable was retrieved from a self-rated ordinal variable with nine categories on house-
hold income and was adjusted by the OECD equivalence scales methodology to account for the
household size.

The variables Canton, Gender and AgeGroup represent the stratification variables of the survey
design.

The data include a significant number of missings, in particular for Poor and RetirTiming. The
authors are grateful to Rainer Gabriel, Michel Oris and the Centre interfacultaire de gerontologie
et d’etudes des vulnerabilites (CIGEV) at the University of Geneva for providing the prepared data
set.

Source

VLV survey
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References

Ludwig, C., S. Cavalli and M. Oris ‘Vivre/Leben/Vivere’: An interdisciplinary survey addressing
progress and inequalities of ageing over the past 30 years in Switzerland. Archives of Gerontology
and Geriatrics.

Gabriel, R., M. Oris, M. Studer and M. Baeriswyl (2015). The Persistance of Social Stratification?
Swiss Journal of Sociology, 41(3), 465–487.

schizo National Institute of Mental Health shizophrenia study

Description

Schizophrenia data from a randomized controlled trial with patients assigned to either drug or
placebo group. "Severity of Illness" was measured, at weeks 0, 1, . . . , 6, on a four category or-
dered scale. Most of the observations where made on weeks 0, 1, 3, and 6.

Usage

data(schizo)

Format

A data frame with 1603 observations on 437 subjects. Five vectors contain information on

id patient ID.

imps79 original response measurements on a numerical scale.

imps79o ordinal response on a 4 category scale, "normal or borderline mentally ill" < "mildly or
moderately ill", "markedly ill", "severely or among the most extremely ill".

tx treatment indicator: 1 for drug, 0 for placebo.

week week.

Details

The documentation file was copied from the mixcat package and slightly modified.

Source

https://hedeker.people.uic.edu/ml.html

References

Hedeker, D. and R. Gibbons (2006). Longitudinal Data Analysis. New Jersey, USA: John Wiley &
Sons.

https://hedeker.people.uic.edu/ml.html
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tvcglm Coefficient-wise tree-based varying coefficient regression based on
generalized linear models

Description

The tvcglm function implements the tree-based varying coefficient regression algorithm for gen-
eralized linear models introduced by Burgin and Ritschard (2017). The algorithm approximates
varying coefficients by piecewise constant functions using recursive partitioning, i.e., it estimates
the selected coefficients individually by strata of the value space of partitioning variables. The
special feature of the provided algorithm is that it allows building for each varying coefficient an in-
dividual partition, which enhances the possibilities for model specification and to select partitioning
variables individually by coefficient.

Usage

tvcglm(formula, data, family,
weights, subset, offset, na.action = na.omit,
control = tvcglm_control(), ...)

tvcglm_control(minsize = 30, mindev = 2.0,
maxnomsplit = 5, maxordsplit = 9, maxnumsplit = 9,
cv = TRUE, folds = folds_control("kfold", 5),
prune = cv, fast = TRUE, center = fast,

maxstep = 1e3, verbose = FALSE, ...)

Arguments

formula a symbolic description of the model to fit, e.g.,
y ~ vc(z1, z2, z3) + vc(z1, z2, by = x1) + vc(z2, z3, by = x2)

where the vc terms specify the varying fixed coefficients. The unnamed argu-
ments within vc terms are interpreted as partitioning variables (i.e., moderators).
The by argument specifies the associated predictor variable. If no such predictor
variable is specified (e.g., see the first term in the above example formula), the
vc term is interpreted as a varying intercept, i.e., an nonparametric estimate of
the direct effect of the partitioning variables. For details, see vcrpart-formula.
Note that the global intercept may be removed by a -1 term, according to the
desired interpretation of the model.

family the model family. An object of class family.

data a data frame containing the variables in the model.

weights an optional numeric vector of weights to be used in the fitting process.

subset an optional logical or integer vector specifying a subset of 'data' to be used in
the fitting process.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.
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na.action a function that indicates what should happen if data contain NAs. The default
na.action = na.omit is listwise deletion, i.e., observations with missings on
any variable are dropped. See na.action.

control a list with control parameters as returned by tvcglm_control, or by tvcm_control
for advanced users.

minsize numeric (vector). The minimum sum of weights in terminal nodes.

mindev numeric scalar. The minimum permitted training error reduction a split must
exhibit to be considered of a new split. The main role of this parameter is to save
computing time by early stopping. May be set lower for very few partitioning
variables resp. higher for many partitioning variables.

maxnomsplit, maxordsplit, maxnumsplit
integer scalars for split candidate reduction. See tvcm_control

cv logical scalar. Whether or not the cp parameter should be cross-validated. If
TRUE cvloss is called.

folds a list of parameters to create folds as produced by folds_control. Is used for
cross-validation.

prune logical scalar. Whether or not the initial tree should be pruned by the estimated
cp parameter from cross-validation. Cannot be TRUE if cv = FALSE.

fast logical scalar. Whether the approximative model should be used to search for
the next split. The approximative search model uses only the observations of the
node to split and incorporates the fitted values of the current model as offsets.
Therewith the estimation is reduces to the coefficients of the added split. If
FALSE, the accurate search model is used.

center logical integer. Whether the predictor variables of update models during the grid
search should be centered. Note that TRUE will not modify the predictors of the
fitted model.

maxstep integer. The maximum number of iterations i.e. number of splits to be processed.

verbose logical. Should information about the fitting process be printed to the screen?

... additional arguments passed to the fitting function fit or to tvcm_control.

Details

tvcglm processes two stages. The first stage, called partitioning stage, builds overly fine partitions
for each vc term; the second stage, called pruning stage, selects the best-sized partitions by collaps-
ing inner nodes. For details on the pruning stage, see tvcm-assessment. The partitioning stage
iterates the following steps:

1. Fit the current generalized linear model
y ~ NodeA:x1 + ... + NodeK:xK

with glm, where Nodek is a categorical variable with terminal node labels for the k-th varying
coefficient.

2. Search the globally best split among the candidate splits by an exhaustive -2 likelihood training
error search that cycles through all possible splits.

3. If the -2 likelihood training error reduction of the best split is smaller than mindev or there is
no candidate split satisfying the minimum node size minsize, stop the algorithm.
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4. Else incorporate the best split and repeat the procedure.

The partitioning stage selects, in each iteration, the split that maximizes the -2 likelihood training
error reduction, compared to the current model. The default stopping parameters are minsize = 30
(a minimum node size of 30) and mindev = 2 (the training error reduction of the best split must be
larger than two to continue).

The algorithm implements a number of split point reduction methods to decrease the computational
complexity. See the arguments maxnomsplit, maxordsplit and maxnumsplit.

The algorithm can be seen as an extension of CART (Breiman et. al., 1984) and PartReg (Wang and
Hastie, 2014), with the new feature that partitioning can be processed coefficient-wise.

Value

An object of class tvcm

Author(s)

Reto Burgin

References

Breiman, L., J. H. Friedman, R. A. Olshen and C.J. Stone (1984). Classification and Regression
Trees. New York, USA: Wadsworth.

Wang, J. C., Hastie, T. (2014), Boosted Varying-Coefficient Regression Models for Product Demand
Prediction, Journal of Computational and Graphical Statistics, 23(2), 361-382.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression
with vcrpart. Journal of Statistical Software, 80(6), 1–33.

See Also

tvcm_control, tvcm-methods, tvcm-plot, tvcm-plot, tvcm-assessment, fvcglm, glm

Examples

## ------------------------------------------------------------------- #
## Example: Moderated effect of education on poverty
##
## The algorithm is used to find out whether the effect of high
## education 'EduHigh' on poverty 'Poor' is moderated by the civil
## status 'CivStat'. We specify two 'vc' terms in the logistic
## regression model for 'Poor': a first that accounts for the direct
## effect of 'CivStat' and a second that accounts for the moderation of
## 'CivStat' on the relation between 'EduHigh' and 'Poor'. We use here
## the 2-stage procedure with a partitioning- and a pruning stage as
## described in Burgin and Ritschard (2017).
## ------------------------------------------------------------------- #

data(poverty)
poverty$EduHigh <- 1 * (poverty$Edu == "high")
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## fit the model
model.Pov <-

tvcglm(Poor ~ -1 + vc(CivStat) + vc(CivStat, by = EduHigh) + NChild,
family = binomial(), data = poverty, subset = 1:200,
control = tvcm_control(verbose = TRUE, papply = lapply,

folds = folds_control(K = 1, type = "subsampling", seed = 7)))

## diagnosis
plot(model.Pov, "cv")
plot(model.Pov, "coef")
summary(model.Pov)
splitpath(model.Pov, steps = 1:3)
prunepath(model.Pov, steps = 1)

tvcm Tree-based varying coefficient regression models

Description

tvcm is the general implementation for tree-based varying coefficient regression. It may be used to
combine the two different algorithms tvcolmm and tvcglm.

Usage

tvcm(formula, data, fit, family,
weights, subset, offset, na.action = na.omit,
control = tvcm_control(), fitargs, ...)

Arguments

formula a symbolic description of the model to fit, e.g.,
y ~ vc(z1, z2) + vc(z1, z2, by = x)

where vc specifies the varying coefficients. See vcrpart-formula.

fit a character string or a function that specifies the fitting function, e.g., olmm or
glm.

family the model family, e.g., an object of class family.olmm or family.

data a data frame containing the variables in the model.

weights an optional numeric vector of weights to be used in the fitting process.

subset an optional logical or integer vector specifying a subset of 'data' to be used in
the fitting process.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

na.action a function that indicates what should happen if data contain NAs. The default
na.action = na.omit is listwise deletion, i.e., observations with missings on
any variable are dropped. See na.action.
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control a list with control parameters as returned by tvcm_control.

fitargs additional arguments passed to the fitting function fit.

... additional arguments passed to the fitting function fit. Note that using the
fitargs argument is the preferred way to for this.

Details

TVCM partitioning works as follows: In each iteration we fit the current model and select a binary
split for one of the current terminal nodes. The selection requires 4 decisions: the vc term, the
node, the variable and the cutpoint in the selected variable. The algorithm starts with Mk = 1
node for each of the K vc terms and iterates until the criteria defined by control are reached, see
tvcm_control. For the specific criteria for the split selection, see tvcolmm and tvcglm.

Alternative tree-based algorithm to tvcm are the MOB (Zeileis et al., 2008) and the PartReg (Wang
and Hastie, 2014) algorithms. The MOB algorithm is implemented by the mob function in the
packages party and partykit. For smoothing splines and kernel regression approaches to varying
coefficients, see the packages mgcv, svcm,mboost or np.

The tvcm function builds on the software infrastructure of the partykit package. The authors are
grateful for these codes.

Value

An object of class tvcm. The tvcm class itself is based on the party class of the partykit package.
The most important slots are:

node an object of class partynode.

data a data.frame. The model frame with all variables for partitioning.

fitted an optional data.frame containing at least the fitted terminal node identifiers as
element (fitted). In addition, weights may be contained as element (weights)
and responses as (response).

info additional information including control, model and data (all untransformed
data, without missings).

Author(s)

Reto Burgin

References

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-Based Recursive Partitioning. Journal of
Computational and Graphical Statistics, 17(2), 492–514.

Wang, J. C. and T. Hastie (2014), Boosted Varying-Coefficient Regression Models for Product
Demand Prediction, Journal of Computational and Graphical Statistics, 23(2), 361–382.

Hothorn, T. and A. Zeileis (2014). partykit: A Modular Toolkit for Recursive Partytioning in R.
In Working Papers in Economics and Statistics, Research Platform Empirical and Experimental
Economics, Number 2014-10. Universitaet Innsbruck.

Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal
Ordinal Responses. Computational Statistics & Data Analysis, 86, 65–80.



tvcm 37

Burgin, R. A. (2015b). Tree-based methods for moderated regression with application to longitudi-
nal data. PhD thesis. University of Geneva.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression
with vcrpart. Journal of Statistical Software, 80(6), 1–33.

See Also

tvcolmm, tvcglm, tvcm_control, tvcm-methods, tvcm-plot, tvcm-assessment

Examples

## ------------------------------------------------------------------- #
## Example 1: Moderated effect of education on poverty
##
## See the help of 'tvcglm'.
## ------------------------------------------------------------------- #

data(poverty)
poverty$EduHigh <- 1 * (poverty$Edu == "high")

## fit the model
model.Pov <-

tvcm(Poor ~ -1 + vc(CivStat) + vc(CivStat, by = EduHigh) + NChild,
family = binomial(), data = poverty, subset = 1:200,
control = tvcm_control(verbose = TRUE, papply = "lapply",

folds = folds_control(K = 1, type = "subsampling", seed = 7)))

## diagnosis
plot(model.Pov, "cv")
plot(model.Pov, "coef")
summary(model.Pov)
splitpath(model.Pov, steps = 1:3)
prunepath(model.Pov, steps = 1)

## ------------------------------------------------------------------- #
## Example 2: Moderated effect effect of unemployment
##
## See the help of 'tvcolmm'.
## ------------------------------------------------------------------- #

data(unemp)

## fit the model
model.UE <-

tvcm(GHQL ~ -1 +
vc(AGE, FISIT, GENDER, UEREGION, by = UNEMP, intercept = TRUE) +
re(1|PID),

data = unemp, control = tvcm_control(sctest = TRUE),
family = cumulative())

## diagnosis (no cross-validation was performed since 'sctest = TRUE')
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plot(model.UE, "coef")
summary(model.UE)
splitpath(model.UE, steps = 1, details = TRUE)

tvcm-assessment Model selection utility functions for tvcm objects.

Description

Pruning, cross-validation to find the optimal pruning parameter and computing validation set errors
for tvcm objects.

Usage

## S3 method for class 'tvcm'
prune(tree, cp = NULL, alpha = NULL, maxstep = NULL,

terminal = NULL, original = FALSE, ...)

## S3 method for class 'tvcm'
prunepath(tree, steps = 1L, ...)

## S3 method for class 'tvcm'
cvloss(object, folds = folds_control(), ...)

folds_control(type = c("kfold", "subsampling", "bootstrap"),
K = ifelse(type == "kfold", 5, 100),
prob = 0.5, weights = c("case", "freq"),
seed = NULL)

## S3 method for class 'cvloss.tvcm'
plot(x, legend = TRUE, details = TRUE, ...)

## S3 method for class 'tvcm'
oobloss(object, newdata = NULL, weights = NULL,

fun = NULL, ...)

Arguments

object, tree an object of class tvcm.

cp numeric scalar. The complexity parameter to be cross-validated resp. the penalty
with which the model should be pruned.

alpha numeric significance level. Represents the stopping parameter for tvcm objects
grown with sctest = TRUE, see tvcm_control. A node is splitted when the p
value for any coefficient stability test in that node falls below alpha.

maxstep integer. The maximum number of steps of the algorithm.
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terminal a list of integer vectors with the ids of the nodes the inner nodes to be set to
terminal nodes. The length of the list must be equal the number of partitions.

original logical scalar. Whether pruning should be based on the trees from partitioning
rather than on the current trees.

steps integer vector. The iteration steps from which information should be extracted.

folds a list with control arguments as produced by folds_control.

type character string. The type of sampling scheme to be used to divide the data of
the input model in a learning and a validation set.

K integer scalar. The number of folds.

weights for folds_control, a character that defines whether the weights of object are
case weights or frequencies of cases; for oobloss, a numeric vector of weights
corresponding to the rows of newdata.

prob numeric between 0 and 1. The probability for the "subsampling" cross-validation
scheme.

seed an numeric scalar that defines the seed.

x an object of class cvloss.tvcm as produced by cvloss.

legend logical scalar. Whether a legend should be added.

details logical scalar. Whether the foldwise validation errors should be shown.

newdata a data.frame of out-of-bag data (including the response variable). See also
predict.tvcm.

fun the loss function for the validation sets. By default, the (possibly weighted)
mean of the deviance residuals as defined by the family of the fitted object is
applied.

... other arguments to be passed.

Details

tvcglm and tvcm processe tree-size selection by default. The functions could be interesting for
advanced users.

The prune function is used to collapse inner nodes of the tree structures by the tuning parameter
cp. The aim of pruning by cp is to collapse inner nodes to minimize the cost-complexity criterion

error(cp) = error(tree) + cp ∗ complexity(tree)

where the training error error(tree) is defined by lossfun and complexity(tree) is defined as the
total number of coefficients times dfpar plus the total number of splits times dfsplit. The function
lossfun and the parameters dfpar and dfsplit are defined by the control argument of tvcm, see
also tvcm_control. By default, error(tree) is minus two times the total likelihood of the model
and complexity(tree) the number of splits. The minimization of error(cp) is implemented by the
following iterative backward-stepwise algorithm

1. fit all subtree models that collapse one inner node of the current tree model.
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2. compute the per-complexity increase in the training error

dev = (error(subtree)− error(tree))/(complexity(tree)− complexity(subtree))

for all fitted subtree models

3. if any dev < cp then set as the tree model the subtree that minimizes dev and repeated 1 to
3, otherwise stop.

The penalty cp is generally unknown and is estimated adaptively from the data. The cvloss func-
tion implements the cross-validation method to do this. cvloss repeats for each fold the following
steps

1. fit a new model with tvcm based on the training data of the fold.

2. prune the new model for increasing cp. Compute for each cp the average validation error.

Doing so yields for each fold a sequence of values for cp and a sequence of average validation er-
rors. These sequences are then combined to a finer grid and the average validation error is averaged
correspondingly. From these two sequences we choose the cp value that minimizes the validation
error. Notice that the average validation error is computed as the total prediction error of the val-
idation set divided by the sum of validation set weights. See also the argument ooblossfun in
tvcm_control and the function oobloss.

The prunepath function can be used to backtrack the pruning algorithm. By default, it shows the
results from collapsing inner nodes in the first iteration. The interesting iteration(s) can be selected
by the steps argument. The output shows several information on the performances when collapsing
inner nodes. The node labels shown in the output refer to the initial tree.

The function folds_control is used to specify the cross-validation scheme, where a random 5-
fold cross-validation scheme is used by default. Alternatives are type = "subsampling" (random
draws without replacement) and type = "bootstrap" (random draws with replacement). For 2-
stage models (with random-effects) fitted by olmm, the subsets are based on subject-wise i.e. first
stage sampling. For models where weights represent frequencies of observation units (e.g., data
from contingency tables), the option weights = "freq" should be considered. cvloss returns an
object for which a print and a plot generic is provided.

oobloss can be used to estimate the total prediction error for validation data (the newdata ar-
gument). By default, the loss is defined as the sum of deviance residuals, see the return value
dev.resids of family resp. family.olmm. Otherwise, the loss function can be defined manually
by the argument fun, see the examples below. In general the sum of deviance residual is equal the
sum of the -2 log-likelihood errors. A special case is the gaussian family, where the deviance resid-
uals are computed as

∑N
i=1 wi(yi − µ)2, that is, the deviance residuals ignore the term log2πσ2.

Therefore, the sum of deviance residuals for the gaussian model (and possibly others) is not exactly
the sum of -2 log-likelihood prediction errors (but shifted by a constant). Another special case are
models with random effects. For models based on olmm, the deviance residuals are retrieved from
marginal predictions (where random effects are integrated out).

Value

prune returns a tvcm object, folds_control returns a list of parameters for building a cross-
validation scheme. cvloss returns an cvloss.tvcm object with at least the following components:

grid a list with values for cp.
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oobloss a matrix recording the validated loss for each value in grid for each fold.

cp.hat numeric scalar. The tuning parameter which minimizes the cross-validated error.

folds the used folds to extract the learning and the validation sets.

oobloss returns a scalar representing the total prediction error for newdata.

Author(s)

Reto Burgin

References

Breiman, L., J. H. Friedman, R. A. Olshen and C.J. Stone (1984). Classification and Regression
Trees. New York, USA: Wadsworth.

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New
York, USA: Springer-Verlag.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression
with vcrpart. Journal of Statistical Software, 80(6), 1–33.

See Also

tvcm

Examples

## --------------------------------------------------------- #
## Dummy Example:
##
## Model selection for the 'vcrpart_2' data. The example is
## merely a syntax template.
## --------------------------------------------------------- #

## load the data
data(vcrpart_2)

## fit the model
control <- tvcm_control(maxstep = 2L, minsize = 5L, cv = FALSE)
model <- tvcglm(y ~ vc(z1, z2, by = x1) + vc(z1, by = x2),

data = vcrpart_2, family = gaussian(),
control = control, subset = 1:75)

## cross-validate 'dfsplit'
cv <- cvloss(model, folds = folds_control(type = "kfold", K = 2, seed = 1))
cv
plot(cv)

## prune model with estimated 'cp'
model.p <- prune(model, cp = cv$cp.hat)

## backtrack pruning
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prunepath(model.p, steps = 1:3)

## out-of-bag error
oobloss(model, newdata = vcrpart_2[76:100,])

## use an alternative loss function
rfun <- function(y, mu, wt) sum(abs(y - mu))
oobloss(model, newdata = vcrpart_2[76:100,], fun = rfun)

tvcm-control Control parameters for tvcm.

Description

Various parameters that control aspects for tvcm.

Usage

tvcm_control(minsize = 30, mindev = ifelse(sctest, 0.0, 2.0),
sctest = FALSE, alpha = 0.05, bonferroni = TRUE,
trim = 0.1, estfun.args = list(), nimpute = 5,
maxnomsplit = 5, maxordsplit = 9, maxnumsplit = 9,
maxstep = 1e3, maxwidth = Inf, maxdepth = Inf,
lossfun = neglogLik2, ooblossfun = NULL, fast = TRUE,
cp = 0.0, dfpar = 0.0, dfsplit = 1.0,
cv = !sctest, folds = folds_control("kfold", 5),
prune = cv, papply = mclapply, papply.args = list(),
center = fast, seed = NULL, verbose = FALSE, ...)

Arguments

alpha, bonferroni, trim, estfun.args, nimpute
See tvcolmm_control

mindev, cv, folds, prune, center
See tvcglm_control

minsize numeric (vector). The minimum sum of weights in terminal nodes.

sctest logical scalar. Defines whether coefficient constancy tests should be used for the
variable and node selection in each iteration.

maxnomsplit integer. For nominal partitioning variables with more the maxnomsplit the cat-
egories are ordered an treated as ordinal.

maxordsplit integer. The maximum number of splits of ordered partitioning variables to be
evaluated.

maxnumsplit integer. The maximum number of splits of numeric partitioning variables to be
evaluated.

maxstep integer. The maximum number of iterations i.e. number of splits to be processed.

maxwidth integer (vector). The maximum width of the partition(s).
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maxdepth integer (vector). The maximum depth of the partition(s).

lossfun a function to extract the training error, typically minus two times the negative
log likelihood of the fitted model (see neglogLik2). Is currently ignored if a
glm model is fitted and fast = TRUE.

ooblossfun a loss function that defines how to compute the validation error during cross-
validation. The function will be assigned to the fun argument of oobloss.

fast logical scalar. Whether the approximative model should be used to search for
the next split. The approximative search model uses only the observations of the
node to split and incorporates the fitted values of the current model as offsets.
Therewith the estimation is reduces to the coefficients of the added split. If
FALSE, the accurate search model is used.

cp numeric scalar. The penalty to be multiplied with the complexity of the model
during partitioning. The complexity of the model is defined as the number of
coefficients times dfpar plus the number of splits times dfsplit. By default,
cp = 0 (no penalization during partitioning) and dfpar = 0 and dfsplit = 1 (the
complexity is measured as the total number of splits). cp also presents the min-
imum evaluated value at cross-validation.

dfpar numeric scalar. The degree of freedom per model coefficient. Is used to compute
the complexity of the model, see cp.

dfsplit a numeric scalar. The degree of freedom per split. Is used to compute the
complexity of the model, see cp.

papply (parallel) apply function, defaults to mclapply. The function will parallelize the
partition stage and the evaluation of the cross-validation folds as well as the final
pruning stage.

papply.args a list of arguments to be passed to papply.

seed an integer specifying which seed should be set at the beginning.

verbose logical. Should information about the fitting process be printed to the screen?

... further, undocumented arguments to be passed.

Value

A list of class tvcm_control containing the control parameters for tvcm.

Author(s)

Reto Burgin

See Also

tvcolmm_control, tvcglm_control, tvcm, fvcm

Examples

tvcm_control(minsize = 100)
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tvcm-methods Methods for tvcm objects

Description

Standard methods for computing on tvcm objects.

Usage

## S3 method for class 'tvcm'
coef(object, ...)

## S3 method for class 'tvcm'
depth(x, root = FALSE, ...)

## S3 method for class 'tvcm'
extract(object, what = c(

"control", "model",
"nodes", "sctest", "p.value",
"devgrid", "cv", "selected",
"coef", "sd", "var"),

steps = NULL, ...)

## S3 method for class 'tvcm'
neglogLik2(object, ...)

## S3 method for class 'tvcm'
predict(object, newdata = NULL,

type = c("link", "response", "prob", "class",
"node", "coef", "ranef"),

ranef = FALSE, na.action = na.pass, ...)

## S3 method for class 'tvcm'
splitpath(tree, steps = 1L,

details = FALSE, ...)

## S3 method for class 'tvcm'
summary(object, ...)

## S3 method for class 'tvcm'
width(x, ...)

Arguments

object, tree, x an object of class tvcm.

root logical scalar. Should the root count be counted in depth?
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steps integer vector. The iteration steps from which information should be extracted.

newdata an optional data frame in which to look for variables with which to predict, if
omitted, the fitted values are used.

type character string. Denotes for predict the type of predicted value. See predict.glm
or predict.olmm. "response" and "prob" are identical.

na.action function determining what should be done with missing values for fixed effects
in newdata. The default is to predict NA: see na.pass.

ranef logical scalar or matrix indicating whether prediction should be based on ran-
dom effects. See predict.olmm.

what a character specifying the quantities to extract.

details logical scalar. Whether detail results like coefficient constancy tests or loss min-
imizing grid search should be shown.

... Additional arguments passed to the calls.

Details

The predict function has two additional options for the type argument. The option "node" calls
the node id and "coef" predicts the coefficients corresponding to an observation. In cases of mul-
tiple vc terms for the same predictor, the coefficients are summed up.

The splitpath function allows to backtrack the partitioning procedure. By default, it shows which
split was chosen in the first iteration. The interesting iteration(s) can be selected by the steps
argument. With details = TRUE it is also possible to backtrack the coefficient constancy tests
and/or the loss reduction statistics.

summary computes summary statistics of the fitted model, including the estimated coefficients. The
varying coefficient are printed by means of a printed decision tree. Notice that in cases there is no
split for the varying coefficient, the average coefficient will be among the fixed effects.

Further undocumented, available methods are: fitted, formula, getCall, logLik, model.frame,
nobs, print, ranef, resid, and weights. All these methods have the same arguments as the
corresponding default methods.

Value

The coef.tvcm and coefficients.tvcm methods return a list with model coefficients. Slot vc
stores varying coefficients, fe fixed coefficients and re coefficients on random effects.

The depth.tvcm method returns a integer vector with the depth of the trees of every varying coef-
ficient. width.tvcm returns a integer vector with the width of the trees.

The extract and extract.tvcm methods allow to extract further information of tvcm objects, such
as the underlying regression model. The type of the return value depends on the input for argument
what.

The formula.tvcm method extracts the model formula, which is an object of class formula. See
also formula.

The methods fitted.tvcm and predict.fvcm return an object of class numeric or matrix, de-
pending on the used model or the specification of the argument type.

The getCall.tvcm method extracts the call for fitting the model, which is an object of class call.
See also call.



46 tvcm-methods

The logLik.tvcm method returns an object of class logLik, see also logLik.

The model.frame.tvcm method returns a data.frame. See also model.frame.

The neglogLik2.tvcm method returns a single numeric, see also neglogLik2.

The nobs.tvcm method extracts the number of observations used to fit the model. See also nobs.tvcm.

The print.tvcm and summary.tvcm methods return NULL.

The ranef.tvcm method returns an object of class matrix with values for the random effects. See
also ranef.olmm and ranef.

The resid.tvcm and residuals.tvcm methods return a numeric or a matrix, depending on the
used model or the type of residuals. See the help of the resid method of the used model.

The methods splitpath and splitpath.tvcm return an object of class splitpath.tvcm that con-
tains information on splitting when building the tree.

The weights.tvcm method extracts a numeric vector with the model weights. See also weights.

Author(s)

Reto Burgin

See Also

tvcm, tvcm-assessment, tvcm-plot

Examples

## ------------------------------------------------------------------- #
## Dummy example:
##
## Apply various methods on a 'tvcm' object fitted on the 'vcrpart_2'
## data. Cross-validation is omitted to accelerate the computations.
## ------------------------------------------------------------------- #

data(vcrpart_2)

model <- tvcm(y ~ -1 + vc(z1, z2) + vc(z1, z2, by = x1) + x2,
data = vcrpart_2, family = gaussian(), subset = 1:90,
control = tvcm_control(cv = FALSE))

coef(model)
extract(model, "selected")
extract(model, "model")
predict(model, newdata = vcrpart_2[91:100,], type = "node")
predict(model, newdata = vcrpart_2[91:100,], type = "response")
splitpath(model, steps = 1)
summary(model, digits = 2)
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tvcm-plot plot method for tvcm objects.

Description

plot method and panel functions for tvcm objects.

Usage

## S3 method for class 'tvcm'
plot(x, type = c("default", "coef",

"simple", "partdep", "cv"),
main, part = NULL, drop_terminal = TRUE,
tnex, newpage = TRUE, ask = NULL,
pop = TRUE, gp = gpar(), ...)

panel_partdep(object, parm = NULL,
var = NULL, ask = NULL,
prob = NULL, neval = 50, add = FALSE,
etalab = c("int", "char", "eta"), ...)

panel_coef(object, parm = NULL,
id = TRUE, nobs = TRUE,
exp = FALSE,
plot_gp = list(),
margins, yadj = 0.1,
mean = FALSE, mean_gp = list(),
conf.int = FALSE, conf.int_gp = list(),
abbreviate = TRUE, etalab = c("int", "char", "eta"), ...)

Arguments

x, object An object of class tvcm.

type the type of the plot. Available types are "default", "simple", "coef", "partdep"
and "cv".

main character. A main title for the plot.

drop_terminal a logical indicating whether all terminal nodes should be plotted at the bottom.
See also plot.party.

tnex a numeric value giving the terminal node extension in relation to the inner nodes.
By default the value is computed adaptively to the tree size.

newpage a logical indicating whether grid.newpage() should be called.

pop a logical whether the viewport tree should be popped before return.

gp graphical parameters. See gpar.

part integer or letter. The partition i.e. varying coefficient component to be plotted.
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parm character vector (panel_partdep and panel_coef) or list of character vectors
(panel_coef) with names of model coefficients corresponding to the chosen
component. Indicates which coefficients should be visualized. If parm is a list,
a separate panel is allocated for each list component.

var character vector. Indicates the partitioning variables to be visualized.

ask logical. Whether an input should be asked before printing the next panel.

prob a probability between 0 and 1. Gives the size of the random subsample over
which the coefficients are averaged. May be smaller than 1 if the sample is
large.

neval the maximal number of distinct values of the variable to be evaluated.

add logical. Whether the panel is to be added into an active plot.

id logical. Whether the node id should be displayed.

nobs logical. Whether the number of observations in each node should be displayed.

exp logical. Whether the labels in the y-axes should be the exponential of coeffi-
cients.

plot_gp a list of graphical parameters for the panels. Includes components xlim, ylim,
pch, ylab, type (the type of symbols, e.g. "b"), label (characters for ticks
at the x axis), height, width, gp (a list produced by gpar). If parm is a list,
plot_gp may be a nested list specifying the graphical parameters for each list
component of parm. See examples.

margins a numeric vector c(bottom, left, top, right) specifying the space on the
margins for each panel. By default the values are computed adaptively to the
tree size.

yadj a numeric scalar larger than zero that increases the margin above the panel. May
be useful if the edge labels are covered by the coefficient panels.

mean logical. Whether the average coefficients over the population should be visual-
ized.

mean_gp list with graphical parameters for plotting the mean coefficients. Includes a
component gp = gpar(...) and a component pch. See examples.

conf.int logical. Whether confidence intervals should be visualized. These are indica-
tive values only. They do not account for the uncertainty of model selection
procedure.

conf.int_gp a list of graphical parameters for the confidence intervals applied to arrow. In-
cludes angle, length, ends and type. See examples.

abbreviate logical scalar. Whether labels of coefficients should be abbreviated.

etalab character. Whether category-specific effects should be labeled by integers of
categories (default), the labels of the categories ("char") or the index of the
predictor ("eta").

... additional arguments passed to panel_partdep or panel_coef or other meth-
ods.
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Details

The plot functions allow the diagnosis of fitted tvcm objects. type = "default", type = "coef"
and type = "simple" show the tree structure and coefficients in each node. type = "partdep" plots
partial dependency plots, see Hastie et al. (2001), section 10.13.2. Finally, type = "cv" shows, if
available, the results from cross-validation.

The functions panel_partdep and panel_coef are exported to show the additional arguments that
can be passed to ... of a plot call.

Notice that user-defined plots can be generated by the use of the plot.party function, see partykit.

Value

The plot.fvcm method returns NULL.

Author(s)

Reto Burgin

References

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New
York, USA: Springer-Verlag.

See Also

tvcm, tvcm-methods

Examples

## ------------------------------------------------------------------- #
## Dummy example:
##
## Plotting the types "coef" and "partdep" for a 'tvcm' object fitted
## on the artificial data 'vcrpart_2'.
## ------------------------------------------------------------------- #

data(vcrpart_2)

## fit the model
model <- tvcglm(y ~ vc(z1, z2, by = x1, intercept = TRUE) + x2,

data = vcrpart_2, family = gaussian(),
control = tvcm_control(maxwidth = 3, minbucket = 5L))

## plot type "coef"
plot(model, "coef")

## add various (stupid) plot parameters
plot(model, "coef",

plot_gp = list(type = "p", pch = 2, ylim = c(-4, 4),
label = c("par1", "par2"), gp = gpar(col = "blue")),

conf.int_gp = list(angle = 45, length = unit(2, "mm"),
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ends = "last", type = "closed"),
mean_gp = list(pch = 16,

gp = gpar(fontsize = 16, cex = 2, col = "red")))

## separate plots with separate plot parameters
plot(model, "coef", parm = list("(Intercept)", "x1"), tnex = 2,

plot_gp = list(list(gp = gpar(col = "red")),
list(gp = gpar(col = "blue"))),

mean_gp = list(list(gp = gpar(col = "green")),
list(gp = gpar(col = "yellow"))))

## plot type "partdep"
par(mfrow = c(1, 2))
plot(model, "partdep", var = "z1", ask = FALSE)

tvcolmm Tree-based varying coefficient regression based on ordinal and nomi-
nal two-stage linear mixed models.

Description

The tvcolmm function implements the tree-based longitudinal varying coefficient regression algo-
rithm proposed in Burgin and Ritschard (2015). The algorithm approximates varying fixed coef-
ficients in the cumulative logit mixed model by a (multivariate) piecewise constant function using
recursive partitioning, i.e., it estimates the fixed effect component of the model separately for strata
of the value space of partitioning variables.

Usage

tvcolmm(formula, data, family = cumulative(),
weights, subset, offset, na.action = na.omit,
control = tvcolmm_control(), ...)

tvcolmm_control(sctest = TRUE, alpha = 0.05, bonferroni = TRUE,
minsize = 50, maxnomsplit = 5, maxordsplit = 9,
maxnumsplit = 9, fast = TRUE,
trim = 0.1, estfun.args = list(), nimpute = 5,
seed = NULL, maxstep = 1e3, verbose = FALSE, ...)

Arguments

formula a symbolic description of the model to fit, e.g.,
y ~ -1 + vc(z1, ..., zL, by = x1 + ... + xP, intercept = TRUE) + re(1|id)

where vc term specifies the varying fixed coefficients. Only one such vc term
is allowed with tvcolmm (in contrast to tvcglm where multiple vc terms can
be specified). The above example formula removes the global intercepts and
adds locally varying intercepts, by adding a -1 term and specfiying intercept
= TRUE in the vc term. If varying intercepts are desired, we recommend to always
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remove the global intercepts. For more details on the formula specification, see
olmm and vcrpart-formula.

family the model family. An object of class family.olmm.

data a data frame containing the variables in the model.

weights an optional numeric vector of weights to be used in the fitting process.

subset an optional logical or integer vector specifying a subset of 'data' to be used in
the fitting process.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

na.action a function that indicates what should happen if data contain NAs. The default
na.action = na.omit is listwise deletion, i.e., observations with missings on
any variable are dropped. See na.action.

control a list with control parameters as returned by tvcolmm_control, or by tvcm_control
for advanced users.

sctest logical scalar. Defines whether coefficient constancy tests should be used for the
variable and node selection in each iteration.

alpha numeric significance threshold between 0 and 1. A node is splitted when the
smallest (possibly Bonferroni-corrected) p value for any coefficient constancy
test in the current step falls below alpha.

bonferroni logical. Indicates if and how p-values of coefficient constancy tests must be
Bonferroni corrected. See details.

minsize numeric scalar. The minimum sum of weights in terminal nodes.
maxnomsplit, maxordsplit, maxnumsplit

integer scalars for split candidate reduction. See tvcm_control.

fast logical scalar. Whether the approximative model should be used to search for
the next split. See tvcm_control.

trim numeric between 0 and 1. Specifies the trimming parameter in coefficient con-
stancy tests for continuous partitioning variables. See also the argument from of
function supLM in package strucchange.

estfun.args list of arguments to be passed to olmm_gefp. See details.

nimpute a positive integer scalar. The number of times coefficient constancy tests should
be repeated in each iteration. See details.

seed an integer specifying which seed should be set at the beginning.

maxstep integer. The maximum number of iterations i.e. number of splits to be processed.

verbose logical. Should information about the fitting process be printed to the screen?

... additional arguments passed to the fitting function fit or to tvcm_control.

Details

The tvcolmm function iterates the following steps:

1. Fit the current mixed model
y ~ Node:x1 + ... + Node:xP + re(1 + w1 + ... |id)

with olmm, where Node is a categorical variable with terminal node labels 1, . . . , M.
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2. Test the constancy of the fixed effects Node:x1, ..., separately for each moderator z1, . . . ,
zL in each node 1, . . . , M. This yields L times M (possibly Bonferroni corrected) p-values for
rejecting coefficient constancy.

3. If the minimum p-value is smaller than alpha, then select the node and the variable corre-
sponding to the minimum p-value. Search and incorporate the optimal among the candidate
splits in the selected node and variable by exhaustive likelihood search.

4. Else if minimum p-value is larger than alpha, stop the algorithm and return the current model.

The implemented coefficient constancy tests used for node and variable selection (step 2) are based
on the M-fluctuation tests of Zeileis and Hornik (2007), using the observation scores of the fitted
mixed model. The observation scores can be extracted by olmm_estfun for models fitted with
olmm. To deal with intra-individual correlations between such observation scores, the olmm_estfun
function decorrelates the observation scores. In cases of unbalanced data, the pre-decorrelation
method requires imputation. nimpute gives the number of times the coefficient constancy tests are
repeated in each iteration. The final p-values are then the averages of the repetations.

The algorithm combines the splitting technique of Zeileis (2008) with the technique of Hajjem et.
al (2011) and Sela and Simonoff (2012) to incorporate regression trees into mixed models.

For the exhaustive search, the algorithm implements a number of split point reduction methods
to decrease the computational complexity. See the arguments maxnomsplit, maxordsplit and
maxnumsplit. By default, the algorithm also uses the approximative search model approach pro-
posed in Burgin and Ritschard (2017). To disable this option to use the original algorithm, set fast
= FALSE in tvcolmm_control.

Special attention is given to varying intercepts, i.e. the terms that account for the direct effects of
the moderators. A common specification is

y ~ -1 + vc(z1, ..., zL, by = x1 + ... + xP, intercept = TRUE) + re(1 + w1 + ... |id)

Doing so replaces the globale intercept by local intercepts. As mentioned, if a varying intercepts
are desired, we recommend to always remove the global intercept.

Value

An object of class tvcm

Author(s)

Reto Burgin

References

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-Based Recursive Partitioning. Journal of
Computational and Graphical Statistics, 17(2), 492–514.

Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter Instability, Statistica
Neerlandica, 61(4), 488–508.

Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal
Ordinal Responses. Computational Statistics & Data Analysis, 86, 65–80.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression
with vcrpart. Journal of Statistical Software, 80(6), 1–33.
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Sela R. and J. S. Simonoff (2012). RE-EM trees: A Data Mining Approach for Longitudinal and
Clustered data, Machine Learning 86(2), 169–207.

A. Hajjem, F. Bellavance and D. Larocque (2011), Mixed Effects Regression Trees for Clustered
Data, Statistics & Probability Letters 81(4), 451–459.

See Also

tvcm_control, tvcm-methods, tvcm-plot, fvcolmm, olmm

Examples

## ------------------------------------------------------------------- #
## Example: Moderated effect effect of unemployment
##
## Here we fit a varying coefficient ordinal linear mixed on the
## synthetic ordinal longitudinal data 'unemp'. The interest is whether
## the effect of unemployment 'UNEMP' on happiness 'GHQL' is moderated
## by 'AGE', 'FISIT', 'GENDER' and 'UEREGION'. 'FISIT' is the only true
## moderator. For the the partitioning we coefficient constancy tests,
## as described in Burgin and Ritschard (2015)
## ------------------------------------------------------------------- #

data(unemp)

## fit the model
model.UE <-

tvcolmm(GHQL ~ -1 +
vc(AGE, FISIT, GENDER, UEREGION, by = UNEMP, intercept = TRUE) +
re(1|PID), data = unemp)

## diagnosis
plot(model.UE, "coef")
summary(model.UE)
splitpath(model.UE, steps = 1, details = TRUE)

vcrpart-demo Synthetic data sets

Description

Synthetic data for illustrations.

Usage

data(vcrpart_1)
data(vcrpart_2)
data(vcrpart_3)
data(unemp)
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Format

y ordered factor. The response variable

id, PID factor. The subject identification vector.

wave numeric. The wave identification vector.

treat a dummy variable. The treatment effect.

x1, x2 numeric predictor variables.

z1, z2, z3, z2 moderator (partitioning) variables.

GHQL self rated general happiness.

YEAR survey year.

UNEMP unemployed or not.

AGE age.

FISIT self-reported financial situation.

GENDER gender.

UEREGION regional unemployment.

See Also

olmm, otsplot, tvcm

Examples

## --------------------------------------------------------- #
## generating 'vcrpart_1'
## --------------------------------------------------------- #

## create skeletton
set.seed(1)
vcrpart_1 <- data.frame(id = factor(rep(1:50, each = 4)),

wave = rep(1:4, 50),
treat = sample(0:1, 200, TRUE))

## add partitioning variables
vcrpart_1$z1 <- rnorm(50)[vcrpart_1$id]
vcrpart_1$z2 <- rnorm(200)
vcrpart_1$z3 <- factor(sample(1:2, 50, TRUE)[vcrpart_1$id])
vcrpart_1$z4 <- factor(sample(1:2, 200, TRUE))

## simulate response
eta <- 2 * vcrpart_1$treat * (vcrpart_1$z4 == "1")
eta <- eta + rnorm(50)[vcrpart_1$id] + rlogis(200)
vcrpart_1$y <- cut(-eta, c(-Inf, -1, 1, Inf), 1:3,

ordered_result = TRUE)

## --------------------------------------------------------- #
## generating 'vcrpart_2'
## --------------------------------------------------------- #
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set.seed(1)
vcrpart_2 <- data.frame(x1 = rnorm(100),

x2 = rnorm(100),
z1 = factor(sample(1:3, 100, TRUE)),
z2 = factor(sample(1:3, 100, TRUE)))

vcrpart_2$y <- vcrpart_2$x1 * (vcrpart_2$z1 == "2") +
2 * vcrpart_2$x1 * (vcrpart_2$z1 == "3")

vcrpart_2$y <- vcrpart_2$y + rnorm(100)

## --------------------------------------------------------- #
## generating 'vcrpart_3'
## --------------------------------------------------------- #

set.seed(1)
vcrpart_3 <- data.frame(x1 = rnorm(100),

z1 = runif(100, -pi/2, pi/2))
vcrpart_3$y <- vcrpart_3$x1 * sin(vcrpart_3$z1) + rnorm(100)

## --------------------------------------------------------- #
## generating 'unemp'
## --------------------------------------------------------- #

## create skeletton
set.seed(1)
unemp <- data.frame(PID = factor(rep(1:50, each = 4)),

UNEMP = rep(c(0, 0, 1, 1), 50),
YEAR = rep(2001:2004, 50))

## add partitioning variables
unemp$AGE <- runif(50, 25, 60)[unemp$PID] + unemp$YEAR - 2000
unemp$FISIT <- ordered(sample(1:5, 200, replace = TRUE))
unemp$GENDER <- factor(sample(c("female", "male"), 50, replace = TRUE)[unemp$PID])
unemp$UEREGION <- runif(50, 0.02, 0.1)[unemp$PID]

## simulate response
eta <- 2 * unemp$UNEMP * (unemp$FISIT == "1" | unemp$FISIT == "2")
eta <- eta + rnorm(50)[unemp$PID] + rlogis(200)
unemp$GHQL <- cut(-eta, c(-Inf, -1, 0, 1, Inf), 1:4,

ordered_result = TRUE)

vcrpart-formula Special terms for formulas.

Description

Special terms for formulas assigned to tvcm, fvcm and olmm.
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Usage

fe(formula, intercept = TRUE)
re(formula, intercept = TRUE)
vc(..., by, intercept = missing(by), nuisance = character())
ce(formula)
ge(formula)

Arguments

formula a symbolic description for the corresponding component of the formula compo-
nent. See examples.

intercept logical or character vector. intercept = TRUE (default) indicates that an inter-
cept is incorporated. intercept = FALSE removes the random intercept from
the formula. Note that the sometimes allowed -1 term is ignored. The character
strings "ce" (category-specific random intercepts) and "ge" (category-global
random intercepts) may be used in connection with olmm. Intercepts have spe-
cific interpretations for fe, re and vc, see the details.

... the names of variables that moderate (i.e. modify) the effects of the variables
specified in by, separated by commas. It is also possibly to assign a vector that
contains the variable names as characters. Note that operators like factor(x)
are not allowed.

by a formula of predictors the effects of which are moderated by the variables in
.... See tvcm and the examples below. Note that the by variable must be
numeric and factor variables must be recoded to dummy variables by hand.

nuisance character vector of variables in by which have to be estimated separately for each
partition but the algorithm should not focus on this variable when searching for
splits.

Details

Special formula terms to define fixed effects fe, varying coefficients vc and random effects re. The
use of these formula terms ensures that the functions fvcm, tvcm and olmm fit the intended model.
Some examples are given below and on the documentation pages of the fitting functions.

For all of fvcm, tvcm and olmm, variables which are not defined with one of fe, vc and re are treated
as fixed effects. Intercepts can be dropped from the model by the intercept argument. The terms
ce (category-specific effects) and ge (global effect or proportional odds effect) are designed for the
function olmm. Notice that tvcm may changes, for internal reasons, the order of the terms in the
specified formula. Note that you can put multiple terms within fe, ge and ce terms (e.g., fe(ce(x1
+ x2 + ge(x3 + x4))).

At present, the term ".", which is often use to extract all variables of the data, is ignored. As an
alternative, vc interprets character vectors, assigned as unnamed arguments, as lists of variables of
moderators to be extracted from data. See the examples below.

Default for intercepts in fe terms is intercept = TRUE, or intercept = "ce" for models fitted
with olmm. This means that an intercept is automatically attached. Alternatives are intercept =
FALSE, which is equal to intercept = "none", and intercept = "ge", which yields a global-effect
intercept for models fitted with olmm.
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Default for intercepts in vc is to introduce an intercept if the by argument is ignored, otherwise no
intercept is introduced. Specifically, if input is specified for the by argument, then intercept =
TRUE, or intercept = "ce" for models fitted by olmm. Alternatives are intercept = FALSE, which
is equal to intercept = "none", and intercept = "ge", which yields a global-effect varying in-
tercept.

Default for intercepts in re is intercept = TRUE, which is equal to intercept = "ge". intercept
= FALSE is equal to intercept = "none". For category-specific random intercepts, use intercept
= "ge". See olmm.

Value

a list used by tvcm, fvcm and olmm for constructing the model matrices.

Author(s)

Reto Burgin

See Also

tvcm, fvcm, olmm

Examples

## Formula for a model with 2 fixed effects (x1 and x2) and a random
## intercept. The 're' terms indicates that an intercept is fitted for
## each level of 'id'.

formula <- y ~ fe(x1 + x2) + re(1|id)

## Formula for a model with one fixed effect and one varying coefficient
## term with 2 moderators and 2 varying coefficient predictors. 'tvcm'
## will fit one partition to model the effects of 'x2' and 'x3' as
## functions of 'z1' and 'z2'.

formula <- y ~ x1 + vc(z1, z2, by = x2 + x3, intercept = TRUE)

## Similar formula as above, but the predictors 'x2' and 'x3' have
## separate 'vc' terms. 'tvcm' will fit a separate partition for each of
## 'x2' and 'x3' to model their effects as functions of 'z1' and 'z2'.

formula <- y ~ x1 + vc(z1, z2, by = x2) + vc(z1, z2, by = x3)

## As an alternative to '.' you can define variables in a vector
vars <- c("x1", "x2", "x3")
formula <- y ~ x1 + vc(vars, by = x2) + vc(vars, by = x3)
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oobloss, 7, 39–41, 43
oobloss (tvcm-assessment), 38
oobloss.fvcm, 6, 7
oobloss.fvcm (fvcm-methods), 5
oobloss.tvcm, 6
optim, 14
ordered, 13
otsplot, 25, 27, 54
otsplot_control, 27
otsplot_control (otsplot), 25
otsplot_filter, 26, 27
otsplot_filter (otsplot), 25

panel_coef, 48, 49
panel_coef (tvcm-plot), 47
panel_partdep, 48, 49
panel_partdep (tvcm-plot), 47
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tvcm-assessment, 38
tvcm-control, 42
tvcm-methods, 44
tvcm-plot, 47
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tvcm_control (tvcm-control), 42
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VarCorr, 19, 20
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vcrpart-formula, 55
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vcrpart_2 (vcrpart-demo), 53
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