--- title: "Welcome to tidyterra" subtitle: "First steps with the tidyterra package" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Welcome to tidyterra} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Welcome to {tidyterra} **tidyterra** is a package that adds common methods from the [**tidyverse**](https://www.tidyverse.org/) for `SpatRaster` and `SpatVectors` objects created with the [**terra**](https://CRAN.R-project.org/package=terra) package. It also adds specific `geom_spat*()` functions for plotting these kind of objects with [**ggplot2**](https://ggplot2.tidyverse.org/). ### Why **tidyterra**? `Spat*` objects are not like regular data frames. They are a different type of objects, implemented via the [S4 object system](http://adv-r.had.co.nz/S4.html), and have their own syntax and computation methods, implemented on the **terra** package. By implementing **tidyverse** methods for these objects, and more specifically **dplyr** and **tidyr** methods, a use**R** can now work more easily with `Spat*` objects, just like (s)he would do with tabular data. **Note that** in terms of performance, **terra** is much more optimized for working for this kind of objects, so it is **recommended** also to learn a bit of **terra** syntax. Each function of **tidyterra** refers (when possible) to the corresponding equivalent on **terra**. ## A note for advanced **terra** users As previously mentioned, **tidyterra** is not optimized in terms of performance. Specially when working with `filter()` and `mutate()` methods, it can be slow. As a rule of thumb, **tidyterra** can handle objects with less than 10.000.000 slots of information (i.e., `terra::ncell(a_rast) * terra::nlyr(a_rast) < 10e6`). ## Get started with **tidyterra** Load **tidyterra** with additional libraries of the **tidyverse**: ``` r library(tidyterra) library(dplyr) library(tidyr) ``` Currently, the following methods are available: | tidyverse method | `SpatVector` | `SpatRaster` | |---------------------|-----------------------|------------------------------------| | `tibble::as_tibble()` | ✔️ | ✔️ | | `dplyr::select()` | ✔️ | ✔️ Select layers | | `dplyr::mutate()` | ✔️ | ✔️ Create /modify layers | | `dplyr::transmute()` | ✔️ | ✔️ | | `dplyr::filter()` | ✔️ | ✔️ Modify cells values and (additionally) remove outer cells. | | `dplyr::slice()` | ✔️ | ✔️ Additional methods for slicing by row and column. | | `dplyr::pull()` | ✔️ | ✔️ | | `dplyr::rename()` | ✔️ | ✔️ | | `dplyr::relocate()` | ✔️ | ✔️ | | `dplyr::distinct()` | ✔️ | | | `dplyr::arrange()` | ✔️ | | | `dplyr::glimpse()` | ✔️ | ✔️ | | `dplyr::inner_join()` family | ✔️ | | | `dplyr::summarise()` | ✔️ | | | `dplyr::group_by()` family | ✔️ | | | `dplyr::rowwise()` | ✔️ | | | `dplyr::count()`, `tally()` | ✔️ | | | `dplyr::bind_cols()` / `dplyr::bind_rows()` | ✔️ as `bind_spat_cols()` / `bind_spat_rows()` | | | `tidyr::drop_na()` | ✔️ | ✔️ Remove cell values with `NA` on any layer. Additionally, outer cells with `NA` are removed. | | `tidyr::replace_na()` | ✔️ | ✔️ | | `tidyr::fill()` | ✔️ | | | `tidyr::pivot_longer()` | ✔️ | | | `tidyr::pivot_wider()` | ✔️ | | | `ggplot2::autoplot()` | ✔️ | ✔️ | | `ggplot2::fortify()` | ✔️ to **sf** via `sf::st_as_sf()` | To a **tibble** with coordinates. | | `ggplot2::geom_*()` | ✔️ `geom_spatvector()` | ✔️ `geom_spatraster()` and `geom_spatraster_rgb()`. | Let's see some of them in action: ### `SpatRasters` See an example with `SpatRaster` objects: ``` r library(terra) f <- system.file("extdata/cyl_temp.tif", package = "tidyterra") temp <- rast(f) temp #> class : SpatRaster #> dimensions : 87, 118, 3 (nrow, ncol, nlyr) #> resolution : 3881.255, 3881.255 (x, y) #> extent : -612335.4, -154347.3, 4283018, 4620687 (xmin, xmax, ymin, ymax) #> coord. ref. : World_Robinson #> source : cyl_temp.tif #> names : tavg_04, tavg_05, tavg_06 #> min values : 1.885463, 5.817587, 10.46338 #> max values : 13.283829, 16.740898, 21.11378 mod <- temp %>% select(-1) %>% mutate(newcol = tavg_06 - tavg_05) %>% relocate(newcol, .before = 1) %>% replace_na(list(newcol = 3)) %>% rename(difference = newcol) mod #> class : SpatRaster #> dimensions : 87, 118, 3 (nrow, ncol, nlyr) #> resolution : 3881.255, 3881.255 (x, y) #> extent : -612335.4, -154347.3, 4283018, 4620687 (xmin, xmax, ymin, ymax) #> coord. ref. : World_Robinson #> source(s) : memory #> names : difference, tavg_05, tavg_06 #> min values : 2.817647, 5.817587, 10.46338 #> max values : 5.307511, 16.740898, 21.11378 ``` On the previous example, we had: - Eliminated the first layer of the raster `tavg_04`. - Created a new layer `newcol` as the difference of the layers `tavg_05` and `tavg_06`. - Relocated `newcol` as the first layer of the `SpatRaster`. - Replaced the `NA` cells on `newcol` with `3`. - Renamed `newcol` to difference. In all the process, the essential properties of the `SpatRaster` (number of cells, columns and rows, extent, resolution and coordinate reference system) have not been modified. Other methods as `filter()`, `slice()` or `drop_na()` can modify these properties, as they would do when applied to a data frame (number of rows would be modified on that case). ### `SpatVectors` `tidyterra >= 0.4.0` provides support to `SpatVectors` for most of the **dplyr** and **tidyr** methods, so it is possible to arrange, group and summarise information of `SpatVectors`. ``` r lux <- system.file("ex/lux.shp", package = "terra") v_lux <- vect(lux) v_lux %>% # Create categories mutate(gr = cut(POP / 1000, 5)) %>% group_by(gr) %>% # Summary summarise( n = n(), tot_pop = sum(POP), mean_area = mean(AREA) ) %>% # Arrange arrange(desc(gr)) #> class : SpatVector #> geometry : polygons #> dimensions : 3, 4 (geometries, attributes) #> extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 (EPSG:4326) #> names : gr n tot_pop mean_area #> type : #> values : (147,183] 2 3.594e+05 244 #> (40.7,76.1] 1 4.819e+04 185 #> (4.99,40.7] 9 1.944e+05 209.8 ``` As in the case of `SpatRaster`, basic properties as the geometry and the CRS are preserved. ## Plotting with **ggplot2** ### `SpatRasters` **tidyterra** provides several `geom_*` for `SpatRasters`. When the `SpatRaster` has the CRS informed (i.e. `terra::crs(a_rast) != ""`), the geom uses `ggplot2::coord_sf()`, and may be also reprojected for adjusting the coordinates to other spatial layers: ``` r library(ggplot2) # A faceted SpatRaster ggplot() + geom_spatraster(data = temp) + facet_wrap(~lyr) + scale_fill_whitebox_c( palette = "muted", na.value = "white" ) ```
A faceted SpatRaster

A faceted SpatRaster

``` r # Contour lines for a specific layer f_volcano <- system.file("extdata/volcano2.tif", package = "tidyterra") volcano2 <- rast(f_volcano) ggplot() + geom_spatraster(data = volcano2) + geom_spatraster_contour(data = volcano2, breaks = seq(80, 200, 5)) + scale_fill_whitebox_c() + coord_sf(expand = FALSE) + labs(fill = "elevation") ```
Contour lines plot for a SpatRaster

Contour lines plot for a SpatRaster

``` r # Contour filled ggplot() + geom_spatraster_contour_filled(data = volcano2) + scale_fill_whitebox_d(palette = "atlas") + labs(fill = "elevation") ```
Contour filled plot for a SpatRaster

Contour filled plot for a SpatRaster

With **tidyterra** you can also plot RGB `SpatRasters` to add imagery to your plots: ``` r # Read a vector f_v <- system.file("extdata/cyl.gpkg", package = "tidyterra") v <- vect(f_v) # Read a tile f_rgb <- system.file("extdata/cyl_tile.tif", package = "tidyterra") r_rgb <- rast(f_rgb) rgb_plot <- ggplot(v) + geom_spatraster_rgb(data = r_rgb) + geom_spatvector(fill = NA, size = 1) rgb_plot ```
Plotting a RGB SpatRaster

Plotting a RGB SpatRaster

**tidyterra** provides selected scales that are suitable for creating hypsometric and bathymetric maps: ``` r asia <- rast(system.file("extdata/asia.tif", package = "tidyterra")) asia #> class : SpatRaster #> dimensions : 164, 306, 1 (nrow, ncol, nlyr) #> resolution : 31836.23, 31847.57 (x, y) #> extent : 7619120, 17361007, -1304745, 3918256 (xmin, xmax, ymin, ymax) #> coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857) #> source : asia.tif #> name : file44bc291153f2 #> min value : -9558.468 #> max value : 5801.927 ggplot() + geom_spatraster(data = asia) + scale_fill_hypso_tint_c( palette = "gmt_globe", labels = scales::label_number(), # Further refinements breaks = c(-10000, -5000, 0, 2000, 5000, 8000), guide = guide_colorbar(reverse = TRUE) ) + labs( fill = "elevation (m)", title = "Hypsometric map of Asia" ) + theme( legend.position = "bottom", legend.title.position = "top", legend.key.width = rel(3), legend.ticks = element_line(colour = "black", linewidth = 0.3), legend.direction = "horizontal" ) ```
Hypsometric tints

Hypsometric tints

### `SpatVectors` **tidyterra** allows you to plot `SpatVectors` with **ggplot2** using the `geom_spatvector()` functions: ``` r lux <- system.file("ex/lux.shp", package = "terra") v_lux <- terra::vect(lux) ggplot(v_lux) + geom_spatvector(aes(fill = POP), color = "white") + geom_spatvector_text(aes(label = NAME_2), color = "grey90") + scale_fill_binned(labels = scales::number_format()) + coord_sf(crs = 3857) ```
Plotting SpatVectors

Plotting SpatVectors

The underlying implementation is to take advantage of the conversion `terra::vect()/sf::st_as_sf()` and use `ggplot2::geom_sf()` as an endpoint for creating the layer. With **tidyterra** we can also aggregate `SpatVectors` at our convenience: ``` r # Dissolving v_lux %>% # Create categories mutate(gr = cut(POP / 1000, 5)) %>% group_by(gr) %>% # Summary summarise( n = n(), tot_pop = sum(POP), mean_area = mean(AREA) ) %>% ggplot() + geom_spatvector(aes(fill = tot_pop), color = "black") + geom_spatvector_label(aes(label = gr)) + coord_sf(crs = 3857) ```
Union of SpatVectors

Union of SpatVectors

``` r # Same but keeping internal boundaries v_lux %>% # Create categories mutate(gr = cut(POP / 1000, 5)) %>% group_by(gr) %>% # Summary without dissolving summarise( n = n(), tot_pop = sum(POP), mean_area = mean(AREA), .dissolve = FALSE ) %>% ggplot() + geom_spatvector(aes(fill = tot_pop), color = "black") + geom_spatvector_label(aes(label = gr)) + coord_sf(crs = 3857) ```
Union of SpatVector keeping the inner borders

Union of SpatVector keeping the inner borders