This document mainly contains examples showing how best to use
summarytools in R Markdown documents. For a
more in-depth view of the package’s features, please see
vignette("introduction", "summarytools")
- the online
version can be found here.
Every time we display summarytools objects with
print()
, view()
, or stview()
, we
pick – explicitly or not – one of several display methods. Possible
display methods are: pander, render, viewer,
and browser. It is one of the parameters for
print.summarytools()
and view()
(alias:
stview()
).
Since methods viewer and browser are mostly meant for interactive work and rely on the same underlying code as render, we will assume for the purpose of this document that there are really only two methods: pander and render.
The pander method is used by default when results are
automatically printed to the console, or when we use
print()
without an explicit method
argument.
The style parameter is communicated to
pander (see ?pander::pander
or visit its
GitHub page to learn
more on this very useful package).
When we use any of the viewer, browser, or render methods, the package uses htmltools to generate results; any specified styles are thus ignored. |
Available styles are the ones supported by pander:
dfSummary()
)dfSummary()
)dfSummary()
if you use
ascii graphs only)Always set results=‘asis’ either
explicitly on a chunk-by-chunk basis or by including
opts_chunk$set(results = 'asis')
in your setup chunk.
Also, don’t forget to specify
plain.ascii = FALSE
in all function calls
using the pander method. It is advised to set this option, as
well as the style
option in the setup chunk:
st_options(plain.ascii = FALSE, style = "rmarkdown")
If you get repeated, unhelpful warnings, use chunk options
message = FALSE and/or warning = FALSE .
Another option is to use the argument silent = TRUE to the
print() method or view() /
stview() functions. See ?st_options to set
this globally for individual functions.
|
The following table indicates which method / style is better suited for each summarytools function in the context of R Markdown documents:
Function | render method | pander method | pander style |
---|---|---|---|
freq() | ✓ | ✓ | rmarkdown |
ctable() | ✓ | Sub-optimal | rmarkdown |
descr() | ✓ | ✓ | rmarkdown |
dfSummary() | ✓ | ✓ | grid |
Recommended Style When Using pander method
For freq()
, descr()
, and
ctable()
, rmarkdown style is recommended. For
dfSummary()
, grid is recommended. Note that
multiline can also be used, but only ascii graphs will
be displayed.
Starting with freq()
, we’ll now review the recommended
methods and styles to get satisfying results in R Markdown
documents.
freq()
is best used with method “pander” (default),
style = "rmarkdown"
; html rendering is also
possible.
With method = "pander"
, style = "rmarkdown"
is the easy winner. Since “pander” is the default method, you can
usually omit the call to print()
. But to make things as
clear as possible, we’ll include it here.
print(freq(tobacco$gender,
plain.ascii = FALSE,
style = "rmarkdown"),
method = "pander")
tobacco$gender
Type: Factor
N | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
F | 489 | 48.90 | 48.90 | 48.90 | 48.90 |
M | 489 | 48.90 | 97.80 | 48.90 | 97.80 |
(Missing) | 22 | 2.20 | 100.00 | 2.20 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 1000 | 100.00 | 100.00 | 100.00 | 100.00 |
There are rarely any problems when using the render method
to display freq()
results.
print(freq(tobacco$gender), method = "render")
Valid | Total | ||||
---|---|---|---|---|---|
gender | N | % | % Cum. | % | % Cum. |
F | 489 | 48.90 | 48.90 | 48.90 | 48.90 |
M | 489 | 48.90 | 97.80 | 48.90 | 97.80 |
(Missing) | 22 | 2.20 | 100.00 | 2.20 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 1000 | 100.00 | 100.00 | 100.00 | 100.00 |
If you find the table is too large, you can use
table.classes = "st-small"
:
print(descr(tobacco), method = "render", table.classes = "st-small")
BMI | age | cigs.per.day | samp.wgts | |
---|---|---|---|---|
Mean | 25.73 | 49.60 | 6.78 | 1.00 |
Std.Dev | 4.49 | 18.29 | 11.88 | 0.08 |
Min | 8.83 | 18.00 | 0.00 | 0.86 |
Q1 | 22.93 | 34.00 | 0.00 | 0.86 |
Median | 25.62 | 50.00 | 0.00 | 1.04 |
Q3 | 28.65 | 66.00 | 11.00 | 1.05 |
Max | 39.44 | 80.00 | 40.00 | 1.06 |
MAD | 4.18 | 23.72 | 0.00 | 0.01 |
IQR | 5.72 | 32.00 | 11.00 | 0.19 |
CV | 0.17 | 0.37 | 1.75 | 0.08 |
Skewness | 0.02 | -0.04 | 1.54 | -1.04 |
SE.Skewness | 0.08 | 0.08 | 0.08 | 0.08 |
Kurtosis | 0.26 | -1.26 | 0.90 | -0.90 |
N.Valid | 974 | 975 | 965 | 1000 |
N | 1000 | 1000 | 1000 | 1000 |
Pct.Valid | 97.40 | 97.50 | 96.50 | 100.00 |
Tables with multi-row headings are not fully supported in markdown (yet), but the result is close to acceptable. This, however, is not true for all themes. That is why the rendering method is preferred.
ctable(tobacco$gender,
tobacco$smoker,
plain.ascii = FALSE,
style = "rmarkdown")
gender * smoker
Data Frame: tobacco
smoker | Yes | No | Total | |
gender | ||||
F | 147 (30.1%) | 342 (69.9%) | 489 (100.0%) | |
M | 143 (29.2%) | 346 (70.8%) | 489 (100.0%) | |
(Missing) | 8 (36.4%) | 14 (63.6%) | 22 (100.0%) | |
Total | 298 (29.8%) | 702 (70.2%) | 1000 (100.0%) |
For best results, use this method.
print(ctable(tobacco$gender, tobacco$smoker), method = "render")
smoker | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
gender | Yes | No | Total | |||||||||
F | 147 | ( | 30.1% | ) | 342 | ( | 69.9% | ) | 489 | ( | 100.0% | ) |
M | 143 | ( | 29.2% | ) | 346 | ( | 70.8% | ) | 489 | ( | 100.0% | ) |
(Missing) | 8 | ( | 36.4% | ) | 14 | ( | 63.6% | ) | 22 | ( | 100.0% | ) |
Total | 298 | ( | 29.8% | ) | 702 | ( | 70.2% | ) | 1000 | ( | 100.0% | ) |
descr()
gives good results with both
style = "rmarkdown"
and html rendering.
descr(tobacco, plain.ascii = FALSE, style = "rmarkdown")
tobacco
N: 1000
BMI | age | cigs.per.day | samp.wgts | |
---|---|---|---|---|
Mean | 25.73 | 49.60 | 6.78 | 1.00 |
Std.Dev | 4.49 | 18.29 | 11.88 | 0.08 |
Min | 8.83 | 18.00 | 0.00 | 0.86 |
Q1 | 22.93 | 34.00 | 0.00 | 0.86 |
Median | 25.62 | 50.00 | 0.00 | 1.04 |
Q3 | 28.65 | 66.00 | 11.00 | 1.05 |
Max | 39.44 | 80.00 | 40.00 | 1.06 |
MAD | 4.18 | 23.72 | 0.00 | 0.01 |
IQR | 5.72 | 32.00 | 11.00 | 0.19 |
CV | 0.17 | 0.37 | 1.75 | 0.08 |
Skewness | 0.02 | -0.04 | 1.54 | -1.04 |
SE.Skewness | 0.08 | 0.08 | 0.08 | 0.08 |
Kurtosis | 0.26 | -1.26 | 0.90 | -0.90 |
N.Valid | 974.00 | 975.00 | 965.00 | 1000.00 |
N | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Pct.Valid | 97.40 | 97.50 | 96.50 | 100.00 |
We’ll use table.classes = "st-small"
to show how it
affects the table’s size, compared to the freq()
table
rendered earlier.
We’ll also use message = FALSE
as chunk option to avoid
the message saying that non-numerical variables have been ignored.
print(descr(tobacco), method = "render", table.classes = "st-small")
BMI | age | cigs.per.day | samp.wgts | |
---|---|---|---|---|
Mean | 25.73 | 49.60 | 6.78 | 1.00 |
Std.Dev | 4.49 | 18.29 | 11.88 | 0.08 |
Min | 8.83 | 18.00 | 0.00 | 0.86 |
Q1 | 22.93 | 34.00 | 0.00 | 0.86 |
Median | 25.62 | 50.00 | 0.00 | 1.04 |
Q3 | 28.65 | 66.00 | 11.00 | 1.05 |
Max | 39.44 | 80.00 | 40.00 | 1.06 |
MAD | 4.18 | 23.72 | 0.00 | 0.01 |
IQR | 5.72 | 32.00 | 11.00 | 0.19 |
CV | 0.17 | 0.37 | 1.75 | 0.08 |
Skewness | 0.02 | -0.04 | 1.54 | -1.04 |
SE.Skewness | 0.08 | 0.08 | 0.08 | 0.08 |
Kurtosis | 0.26 | -1.26 | 0.90 | -0.90 |
N.Valid | 974 | 975 | 965 | 1000 |
N | 1000 | 1000 | 1000 | 1000 |
Pct.Valid | 97.40 | 97.50 | 96.50 | 100.00 |
To get optimal results, whichever method you choose, it is always
best to omit at least 1, and if possible 2 columns from the output.
Also, pick carefully the value of the graph.magnif
parameter.
Don’t forget to specify plain.ascii = FALSE
(or set it
as a global option with st_options(plain.ascii = FALSE)
),
or you won’t get good results.
(Note: The following output is an image (screenshot). This is because CRAN doesn’t allow writing in “/tmp” or any directory other than R’s temp directory, which would pose problems in terms of column widths. The introductory vignette explains this issue in more details.)
dfSummary(tobacco,
plain.ascii = FALSE,
style = "grid",
graph.magnif = 0.75,
varnumbers = FALSE,
valid.col = FALSE,
tmp.img.dir = "/tmp")
This method works really well, and not having to specify the
tmp.img.dir
parameter is a plus.
print(dfSummary(tobacco,
varnumbers = FALSE,
valid.col = FALSE,
graph.magnif = 0.75),
method = "render")
Variable | Stats / Values | Freqs (% of Valid) | Graph | Missing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gender [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
age [numeric] |
|
63 distinct values | 25 (2.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
age.gr [factor] |
|
|
25 (2.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BMI [numeric] |
|
974 distinct values | 26 (2.6%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
smoker [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
cigs.per.day [numeric] |
|
37 distinct values | 35 (3.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
diseased [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
disease [character] |
|
|
778 (77.8%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
samp.wgts [numeric] |
|
|
0 (0.0%) |
For data frames containing numerous variables, we can use the
max.tbl.height
argument to wrap the results in a scrollable
window having the specified height, in pixels.
print(dfSummary(tobacco,
varnumbers = FALSE,
valid.col = FALSE,
graph.magnif = 0.75),
max.tbl.height = 300,
method = "render")
Variable | Stats / Values | Freqs (% of Valid) | Graph | Missing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gender [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
age [numeric] |
|
63 distinct values | 25 (2.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
age.gr [factor] |
|
|
25 (2.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BMI [numeric] |
|
974 distinct values | 26 (2.6%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
smoker [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
cigs.per.day [numeric] |
|
37 distinct values | 35 (3.5%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
diseased [factor] |
|
|
0 (0.0%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
disease [character] |
|
|
778 (77.8%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
samp.wgts [numeric] |
|
|
0 (0.0%) |
Some users reported getting lots of X11 warnings; those can easily be
turned off by using this chunk expression:
{r, results="asis", warning=FALSE} .
|
As explained in the introductory vignette, tb()
can be
used to convert summarytools objects created with
freq()
and descr()
to simple tibbles,
which packages specialized in table formatting will be able to process.
This is particularly helpful with stby
objects:
library(kableExtra)
library(magrittr)
stby(iris, iris$Species, descr, stats = "fivenum") |>
tb() |>
kable(format = "html", digits = 2) |>
collapse_rows(columns = 1, valign = "top")
Species | variable | min | q1 | med | q3 | max |
---|---|---|---|---|---|---|
setosa | Petal.Length | 1.0 | 1.4 | 1.50 | 1.6 | 1.9 |
Petal.Width | 0.1 | 0.2 | 0.20 | 0.3 | 0.6 | |
Sepal.Length | 4.3 | 4.8 | 5.00 | 5.2 | 5.8 | |
Sepal.Width | 2.3 | 3.2 | 3.40 | 3.7 | 4.4 | |
versicolor | Petal.Length | 3.0 | 4.0 | 4.35 | 4.6 | 5.1 |
Petal.Width | 1.0 | 1.2 | 1.30 | 1.5 | 1.8 | |
Sepal.Length | 4.9 | 5.6 | 5.90 | 6.3 | 7.0 | |
Sepal.Width | 2.0 | 2.5 | 2.80 | 3.0 | 3.4 | |
virginica | Petal.Length | 4.5 | 5.1 | 5.55 | 5.9 | 6.9 |
Petal.Width | 1.4 | 1.8 | 2.00 | 2.3 | 2.5 | |
Sepal.Length | 4.9 | 6.2 | 6.50 | 6.9 | 7.9 | |
Sepal.Width | 2.2 | 2.8 | 3.00 | 3.2 | 3.8 |
Using tb(order = 3)
flips the order of the grouping
variable(s) and the reported variable(s):
stby(iris, iris$Species, descr, stats = "fivenum") |>
tb(order = 3) |>
kable(format = "html", digits = 2) |>
collapse_rows(columns = 1, valign = "top")
variable | Species | min | q1 | med | q3 | max |
---|---|---|---|---|---|---|
Petal.Length | setosa | 1.0 | 1.4 | 1.50 | 1.6 | 1.9 |
versicolor | 3.0 | 4.0 | 4.35 | 4.6 | 5.1 | |
virginica | 4.5 | 5.1 | 5.55 | 5.9 | 6.9 | |
Petal.Width | setosa | 0.1 | 0.2 | 0.20 | 0.3 | 0.6 |
versicolor | 1.0 | 1.2 | 1.30 | 1.5 | 1.8 | |
virginica | 1.4 | 1.8 | 2.00 | 2.3 | 2.5 | |
Sepal.Length | setosa | 4.3 | 4.8 | 5.00 | 5.2 | 5.8 |
versicolor | 4.9 | 5.6 | 5.90 | 6.3 | 7.0 | |
virginica | 4.9 | 6.2 | 6.50 | 6.9 | 7.9 | |
Sepal.Width | setosa | 2.3 | 3.2 | 3.40 | 3.7 | 4.4 |
versicolor | 2.0 | 2.5 | 2.80 | 3.0 | 3.4 | |
virginica | 2.2 | 2.8 | 3.00 | 3.2 | 3.8 |
Here is a recipe for including fully formatted data frame summaries in pdf documents. There is some work involved, but carefully following the instructions given here should give the expected results.
There are basically two parts to this: first, you must create a preamble tex file. Second, you must indicate in the YAML section of your document where to find this file.
This is the content that needs to be included as preamble. You can either copy this into your own tex file, or use the file that is now included in summarytools (as of version 1.0), following the instructions provided below.
\usepackage{graphicx}
\usepackage[export]{adjustbox}
\usepackage{letltxmacro}
\LetLtxMacro{\OldIncludegraphics}{\includegraphics}
\renewcommand{\includegraphics}[2][]{\raisebox{0.5\height}%
{\OldIncludegraphics[valign=t,#1]{#2}}}
If you choose to create a tex file from the above content, the name of the file is arbitrary – you can use whatever name you want. Its location is also up to you. I suggest you put it in the same location as your Rmd file.
Along with the graph.magnif
parameter for
dfSummary()
, you might need to adjust the 0.5
value used as raisebox
parameter in the preamble.
Your document should start with a YAML header like this one:
---
title: "My PDF With Data Frame Summaries"
output:
pdf_document:
latex_engine: xelatex
includes:
in_header:
- !expr system.file("includes/fig-valign.tex", package = "summarytools")
---
If you need to customize the content of the preamble, then your header will look something like this (assuming it is in the same directory as your Rmd document):
---
title: "My PDF With Data Frame Summaries"
output:
pdf_document:
latex_engine: xelatex
includes:
in_header: fig-valign-modified.tex
---
The xelatex engine option is not mandatory, but there are several advantages to it. I use it systematically and recommend you do the same. |
Here is an example setup chunk:
```{r, message=FALSE}
library(summarytools)
st_options(
plain.ascii = FALSE,
style = "rmarkdown",
dfSummary.style = "grid",
dfSummary.valid.col = FALSE,
dfSummary.graph.magnif = .52,
subtitle.emphasis = FALSE,
tmp.img.dir = "/tmp"
)
```
And here is a chunk actually creating the summary:
```{r, results='asis', message=FALSE}
define_keywords(title.dfSummary = "Data Frame Summary in PDF Format")
dfSummary(tobacco)
```
Since we redefined the \(\LaTeX\)
command includegraphics
, all images included using
[](some-image.png)
will be impacted. In some cases, this
could pose a problem. Eventually, we hope to find a more robust
solution, without such side-effects. (If you are well versed in \(\LaTeX\) and think you can solve this
problem, please get in touch.)
This vignette uses theme rmarkdown::html_vignette
. Its
YAML section looks like this:
---
title: "Summarytools in R Markdown Documents"
author: "Dominic Comtois"
date: "2025-02-20"
output:
html_document:
fig_caption: false
toc: true
toc_depth: 1
css: assets/vignette.css
vignette: >
%\VignetteIndexEntry{Summarytools in R Markdown Documents}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
%\VignetteDepends{magrittr}
%\VignetteDepends{kableExtra}
---
The vignette.css file is copied from the installed rmarkdown package’s ‘templates/html_vignette/resources’ directory.
The following global options for knitr and summarytools have been set. Other options might also be useful to optimize content, but this is a good place to start from.
```{r setup, include=FALSE}
library(knitr)
opts_chunk$set(comment=NA,
prompt=FALSE,
cache=FALSE,
echo=TRUE,
results='asis')
st_options(bootstrap.css = FALSE, # Already part of the theme
plain.ascii = FALSE, # Essential setting for Rmd
style = "rmarkdown", # Essential setting for Rmd
dfSummary.silent = TRUE, # Hides redundant messages
footnote = NA, # Keeping the results minimal
subtitle.emphasis = FALSE) # For the vignette theme,
# this gives better results.
# For other themes, using
# TRUE might be preferable.
```
Finally, summarytools CSS has been included in the following manner, before the setup chunck:
```{r, echo=FALSE, results='asis'}
summarytools::st_css(main = TRUE, global = TRUE)
```
This is by no way a definitive guide; depending on the themes you use, you could find that other settings yield better results. If you are looking to create a Word or a PDF document, you might want to try different combinations of options. If you find problems with the recommended settings or if you find better combinations, you are welcome to open an issue on GitHub to suggest modifications or make a pull request with your own improvements to this vignette.