Travis-CI Build Status CRAN_Status_Badge downloads

stable R package

This package is intended to be the developmental version to the CRAN version of Jim Lindsey’s stable. The .zip files listed on his homepage have been listed as version 1.0 since 2005. For the subsequent maintenance on this github and CRAN, we will start at 1.1.

To compare this version with the static v1.0 files on Jim Lindsey’s Homepage, it may be useful to use the compare page for this repo’s two branches.

comparisons with stabledist R package

In brief, the parameters have different names and are transformations for each other. First, the names:

stabledist stable
alpha tail
beta skew
gamma disp
delta loc

If you read the Lambert and Lindsey (1999 JRSS-C) PDF in this repo, be aware that location is given the greek letter gamma and scale is given the greek letter delta. The Nolan PDF does the opposite and is used for stabledist.

[Swihart 2022 update, see references in ?dstable:] In this README we detail how to make equivalent calls to those of ‘stabledist’ (i.e., Nolan’s 0-parameterization and 1-parameterization as detailed in Nolan (2020)). See github for Lambert and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable distribution which allowed a Fourier inversion to arrive at a form similar to but not exactly the \(g_d\) function as detailed in Nolan (2020), Abdul-Hamid and Nolan (1998) and Nolan (1997).
The Nolan (2020) reference is a textbook that provides an accessible and comprehensive summary of stable distributions in the 25 years or so since the core of this R package was made and put on CRAN.
The Buck (1995) parameterization most closely resembles the Zolotarev B parameterization outlined in Definition 3.6 on page 93 of Nolan (2020) – except that Buck (1995) did not allow the scale parameter to multiply with the location parameter.
This explains why the Zolotarev B entry in Table 3.1 on page 97 of Nolan (2020) has the location parameter being multiplied by the scale parameter whereas in converting the Lindsey and Lambert (1999) to Nolan 1-parameterization the location parameter stays the same.

To be clear, and are evaluated by numerically integrating the inverse Fourier transform. The code works reasonably for small and moderate values of x, but will have numerical issues in some cases large x(such as values from being greater than 1 or or not being monotonic). The arguments , , , and can be adjusted to improve accuracy at the cost of speed, but will still have limitations. Functions that avoid these problems are available in other packages (such as and ) that use an alternative method (as detailed in Nolan 1997)
distinct from directly numerically integrating the Fourier inverse transform. See last example in this README.

For some values for some distributions things match up nicely, as we see with Normal and Cauchy:

normal distribution

q <- 3
    stable::pstable(q, tail =2, skew=0, disp =1, loc  =0)
#> [1] 0.9830526
stabledist::pstable(q, alpha=2, beta=0, gamma=1, delta=0)
#> [1] 0.9830526

cauchy distribution

q <- 3
    stable::pstable(q, tail =1, skew=0, disp =1, loc  =0)
#> [1] 0.8975836
stabledist::pstable(q, alpha=1, beta=0, gamma=1, delta=0)
#> [1] 0.8975836

However, to make stable equivalent to stabledist in general, some transformations are needed. Please see the following examples. Between stabledist and stable, the alpha is equivalent to tail and the delta is equivalent to loc with no transformation. For the beta (skew) and gamma (disp) parameters, a transformation is needed to get equivalent calls. Note differences still may exist to numerical accuracy.

levy cdf

q <-  0.9

# nolan pm=1 parameters:
a <-  0.5
b <-  1
c <-  .25
d <-  0.8

# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d 
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)

    stable::pstable(q, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 0.1154242
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1138462
rmutil::plevy(q, m=d, s=c)
#> [1] 0.1138463

# more accuracy!!!!?!
    stable::pstable(q, tail =a, skew=b3, disp =c3, loc  =d, eps = 0.13*1e-7)
#> [1] 0.1138786

levy pdf

q <-  0.9

# nolan pm=1 parameters:
a <-  0.5
b <-  1
c <-  .25
d <-  0.8

# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d 
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)

    stable::dstable(q, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 1.806389
stabledist::dstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> Warning in uniroot(function(th) log(g(th)), lower = l.th, upper = u.th, : -
#> Inf replaced by maximally negative value

#> Warning in uniroot(function(th) log(g(th)), lower = l.th, upper = u.th, : -
#> Inf replaced by maximally negative value
#> Warning in .integrate2(g1, lower = a, upper = b, subdivisions =
#> subdivisions, : roundoff error is detected in the extrapolation table
#> [1] 1.807224
rmutil::dlevy(q, m=d, s=c)
#> [1] 1.807224

levy quantile

p <-  .3

# nolan pm=1 parameters:
a <-  0.5
b <-  1
c <-  .25
d <-  0.8

# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d 
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)

    stable::qstable(p, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 1.031301
stabledist::qstable(p, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 1.032735
rmutil::qlevy(p, m=d, s=c)
#> [1] 1.032733

play with alpha not 2 and not 1

q <- -1.97

# nolan pm=1 parameters:
a <-  0.8
b <-  0
c <-  1
d <-  0

# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d 
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)

    stable::pstable(q, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 0.1722953
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d)
#> [1] 0.1722945

play with skew

q <- -1

# nolan pm=1 parameters:
a <-  1.3
b <-  0.4
c <-  2
d <-  0.75

# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d 
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- -sign(b)*2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)

    stable::pstable(q, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 0.4349168
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.4348957

    stable::dstable(q, tail =a, skew=b3, disp =c3, loc  =d)
#> [1] 0.1454112
stabledist::dstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1454111

The example above, but using sd2s and s2sd

q <- -1
# nolan pm=1 parameters:
a <-  1.3
b <-  -0.4
c <-  2
d <-  0.75
# sd2s takes nolan (stabledist) parameters and returns lindsey (stable)
s <- stable::sd2s(alpha=a, beta=b, gamma=c, delta=d)
stable::pstable(q, tail = s$tail, skew=s$skew, disp = s$disp, loc  = s$loc)
#> [1] 0.196531
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1965513
# s2sd takes lindsey (stable) parameters and returns nolan (stabledist)
sd <- stable::s2sd(tail = s$tail, skew=s$skew, disp = s$disp, loc  = s$loc)
stabledist::pstable(q, alpha=sd$alpha, beta=sd$beta , gamma=sd$gamma , delta=sd$delta, pm=1)
#> [1] 0.1965513

pm1_to_pm0

q <- -1
# nolan pm=1 parameters:
a1 <-  1.3
b1 <-  -0.4
c1 <-  2
d1 <-  0.75
# for a1 != 1
d0 <- d1 + b1*c1*tan(pi*a1/2)

# Calculate d0 by hand or use pm1_to_pm0():
# Convert to nolan pm=0 parameters:
pm0 <- stable::pm1_to_pm0(a1,b1,c1,d1)
a0 <- pm0$a0
b0 <- pm0$b0
c0 <- pm0$c0
d0 <- pm0$d0
# check:
stabledist::pstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d1, pm=1)
#> [1] 0.1965513
# only change delta=d0 for pm=0
stabledist::pstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d0, pm=0)
#> [1] 0.1965513
stabledist::pstable(q, alpha=a0, beta=b0 , gamma=c0 , delta=d0, pm=0)
#> [1] 0.1965513


stabledist::dstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d1, pm=1)
#> [1] 0.0572133
# only change delta=d0 for pm=0
stabledist::dstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d0, pm=0)
#> [1] 0.0572133
stabledist::dstable(q, alpha=a0, beta=b0 , gamma=c0 , delta=d0, pm=0)
#> [1] 0.0572133

mode of a stable distribution

q <- -1
# nolan pm=1 parameters:
# a1 <-  1.3
# b1 <-  0.4
# c1 <-  2
# d1 <-  0.75
a1 <-  1.3
b1 <-  .5
c1 <-  1
d1 <-  0
# for a1 != 1
d0 <- d1 + b1*c1*tan(pi*a1/2)


s <- stable::sd2s(alpha=a1, beta=b1, gamma=c1, delta=d1)
stable::stable.mode(tail = s$tail, skew=s$skew, disp = s$disp, loc  = s$loc)$ytilde
#> [1] -1.13224

c1*stabledist::stableMode(alpha=a1, beta=b1)+d0
#> [1] -1.133257

xran <- seq(-2.5,2.6,0.001)
ysd <- stabledist::dstable(xran, alpha=a1, beta=b1, gamma=c1, delta=d1, pm=1)
#plot(xran, ysd)

xran[ysd == max(ysd)]
#> [1] -1.133

ys <- stable::dstable(xran, tail = s$tail, skew=s$skew, disp = s$disp, loc  = s$loc)
#points(xran, ys, col="blue")

xran[ys == max(ys)]
#> [1] -1.133

possible numerical issues for large x


param_conv <- stable::s2sd(1.5, 0.5, 1/sqrt(2), 0)
param_conv
head(stable::dstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc  = 0))
head(stabledist::dstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1))

plot(q,stable::dstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc  = 0), type="s")
plot(q,stabledist::dstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1), type="s")

param_conv <- stable::s2sd(1.5, 0.5, 1/sqrt(2), 0)
param_conv
plot(q,stable::pstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc  = 0), type="s")
plot(q,stabledist::pstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1), type="s")