## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE, fig.width = 5, fig.height = 4 ) ## ----setup, eval = TRUE------------------------------------------------------- library(ssd4mosaic) ## ----data_setup, eval = TRUE-------------------------------------------------- # Data creation # Most often, you would archive the same result by reading a table file with a # function akin to utils::read.delim() data <- ssd4mosaic::fluazinam # Which distribution to fit to the data. # See get_fits function documentation for possible options distributions <- list("lnorm") # Whether to display the results plots with a logscale x-axis logscale <- TRUE # Concentration unit for plots labels unit <- "\u03bcg/L" ## ----fitting, eval = TRUE----------------------------------------------------- ## model fitting fits <- ssd4mosaic::get_fits(data, distributions, TRUE) ## bootstrapping bts <- ssd4mosaic::get_bootstrap(fits)[[1]] ## ----fit_info, eval = TRUE---------------------------------------------------- ## Model parameters lapply(fits, summary) ## HCx values lapply(bts, quantile, probs = c(0.05, 0.1, 0.2, 0.5)) ## ----plots, eval = FALSE------------------------------------------------------ # ## CDF plot with confidence intervals # p <- ssd4mosaic::base_cdf(fits, unit = unit, logscale = logscale) # ssd4mosaic::add_CI_plot(p, bts, logscale) # ## CDF plot with species names # ssd4mosaic::options_plot(fits, unit, logscale, data, use_names = TRUE) # ## CDF plot colored by group # ssd4mosaic::options_plot(fits, unit, logscale, data, use_groups = TRUE)