Implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.
Version: |
0.1.0 |
Imports: |
doParallel (≥ 1.0.0), foreach (≥ 1.5.0), genMCMCDiag (≥
0.2.0), ggplot2 (≥ 3.4.0), ggtext (≥ 0.1.0), glmnet (≥
4.1.0), gridExtra (≥ 2.0), LaplacesDemon (≥ 16.0.0), lifecycle, mvtnorm (≥ 1.2.0), optimg (≥ 0.1.2), parallel (≥
4.0.0), stats (≥ 4.0.0), utils (≥ 4.0.0) |
Suggests: |
knitr, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2024-05-16 |
DOI: |
10.32614/CRAN.package.skipTrack |
Author: |
Luke Duttweiler
[aut, cre, cph] |
Maintainer: |
Luke Duttweiler <lduttweiler at hsph.harvard.edu> |
BugReports: |
https://github.com/LukeDuttweiler/skipTrack/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/LukeDuttweiler/skipTrack |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
skipTrack results [issues need fixing before 2025-01-30] |