
simecol: An Object-Oriented Framework for Ecological

Modeling in R

Thomas Petzoldt

Technische Universität Dresden
Institut für Hydrobiologie

Karsten Rinke

Helmholtz-Centre
for Environmental Research - UFZ

Abstract

The simecol package provides an open structure to implement, simulate and share
ecological models. A generalized object-oriented architecture improves readability and
potential code re-use of models and makes simecol-models freely extendable and simple
to use. The simecol package was implemented in the S4 class system of the program-
ming language R. Reference applications, e.g. predator-prey models or grid models are
provided which can be used as a starting point for own developments. Compact example
applications and the complete code of an individual-based model of the water flea Daph-

nia document the efficient usage of simecol for various purposes in ecological modeling,
e.g. scenario analysis, stochastic simulations and individual based population dynamics.
Ecologists are encouraged to exploit the abilities of simecol to structure their work and
to use R and object-oriented programming as a suitable medium for the distribution and
share of ecological modeling code.

Note: A previous version of this document has been published as ? in the Journal
of Statistical Software, Redhttps://www.jstatsoft.org/v22/i09. Please refer to the
original publication when citing this work.

Keywords: ecological modeling, individual-based model, object-oriented programming (OOP),
code-sharing, R.

1. Introduction

The R system with the underlying S programming language is well suited for the develop-
ment, implementation and analysis of dynamic models. It is, in addition to data analysis,
increasingly used for model simulations in many disciplines like pharmacology (?), psychol-
ogy (?), microbiology (?), epidemiology (?), ecology (???) or econometrics (??). Existing
applications already cover a range from small conceptual process and teaching models up
to coupled hydrodynamic-ecological models (?). Small models can be implemented easily in
pure R (?) or by means of the XML-based Systems Biology Markup Language SBML and
the corresponding Bioconductor package (?). For more complex or computation intensive
simulations R is primarily used as an environment for data management, simulation control
and data analysis, while the model core may be implemented in other languages like C/C++,
FORTRAN or JAVA.

This works perfectly at the extremes, but problems appear with medium-sized models. While
larger modeling projects usually start with an extensive planning and design phase carried

https://www.jstatsoft.org/v22/i09

2 Ecological Modeling with simecol

out by experienced people, small models can be implemented ad-hoc without problems in
R from scratch or by modification of online help examples. On the other hand, medium-
sized applications often start by extension of small examples up to ever increasing size and
complexity. An adequate design period is often skipped and at the end of a modeling project
no time remains for re-design or appropriate documentation. The resulting programs are
necessarily ill-structured in most cases or at least exhibit a very special, proprietary design.

The situation is even worse in ecological modeling, because this discipline is broad, modeling
strategies vary substantially and ecological modelers are very creative. Different families
of models (e.g. statistical, differential equations, discrete event, individual-based, spatially
explicit) are applied alone or in mixtures to different ecological systems (terrestrial, limnetic,
marine) and scales (individuals, laboratory systems, lakes/rivers/forests, oceans, biosphere).
Not enough that there is a Babel of programming languages and simulation systems, there
is also a Babel of approaches. There are often cases where it seems to be necessary to
understand the whole source code when one tries to modify only one single parameter value
or to introduce a new equation and it is not seldom easier to re-write code from scratch than
to reuse an existing one.

We aim to propose a possible way out of the dilemma, an open structure to implement and
simulate ecological models. The R package simecol is provided to demonstrate the feasibility
of this approach including a starter set of examples and utility functions to work with such
models.

After giving a description of the design goals and the specification of the simObj class in
Sections ?? and ?? we demonstrate basic use of the package in Section ??. The different
mechanisms available to implement and simulate simObj models are explained in Section ??.
A complete individual-based model is given in Section ?? to elucidate how to use and extend
simecol in the modeling process. Finally, we discuss perspectives of R and simecol in ecological
modeling as well as relations to other packages (Section ??).

2. Design goals

Our first goal is to provide a generalized architecture for the implementation of ecological
models. Such a unified style, which can be considered as a template or prototype of model
implementations, provides manifold advantages for a scientific community. The structured
architecture will increase readability of the code by separating model equations from other
code elements, e.g. for numerical techniques. This will enable ecological modellers to use R
as a communication medium and allows to distribute model source code together with its
documentation, e.g. as executable part of the “standard protocol for describing individual-
based and agent-based models” suggested by ?.

We want to stress that we don not intend to establish yet another simulation system. Com-
plete simulation systems are numerous and well-established for specified applications, e.g.
STELLA1, Berkeley Madonna2, VENSIM3, EcoBeaker4 or the GNU open source system
ECOBAS (?). A comprehensive overview about software used in ecological modeling is given

1https://www.iseesystems.com/
2https://www.berkeleymadonna.com/
3https://www.vensim.com/
4https://www.ecobeaker.com/

https://www.iseesystems.com/
https://www.berkeleymadonna.com/
https://www.vensim.com/

Thomas Petzoldt, Karsten Rinke 3

elsewhere e.g. at https://www.systemdynamics.org/ or Chapter 8 of ?. These simulation
systems can be extremely effective for the specific class of applications they are intended for,
but, they often lack the full power and flexibility of a programming language. In such cases,
model frameworks or simulation libraries are commonly used to support one specific model
family, e.g. PASCAL templates for ordinary differential and delay-differential equations (?), an
object-oriented C++ framework like OSIRIS (?) for individual-based models or the Objective
C framework SWARM5 for agent-based simulations.

An alternative approach is the use of high-level programming environments and matrix ori-
ented languages like MATLAB6 or R (?). Such languages allow a more interactive development
cycle, compared to compiled languages, and outweigh their performance handicap by efficient
algorithms and compiled libraries for numerics and data management. Both openness and
interactivity have made the R system a universal scripting interface for the free combination
of a large diversity of applications in statistics and scientific computing.

The second design goal is to be as open as possible and to take advantage of the open
philosophy of R. Users should be allowed to employ the full power of R’s graphical, statistical
and data management functions and to use arbitrary code written in R or compiled languages.
The complete code of simecol-models should be published under a license that minimizes
dependence from others and guarantees unrestricted use in science and education, including
the possibility to be modified by others. Within this context, simecol is intended to provide a
framework on the meta-level identifying structure-components of ecological simulation models.

Our third design goal is ease of use and simplicity. One of the main characteristics of pro-
gramming languages like S and R is that users become programmers (?). Unfortunately,
ecologists are commonly not well-trained in programming, which often hampers their applica-
tion of models. Therefore, we aim to provide a software layer that bridges this gap and helps
ecologists to work with models. In consequence, this means for simecol that simplicity of
implementation is more important than efficiency. The system should support a broad level
of user experience – in our case ecological models covering the whole range from teaching
models to research applications.

From the perspective of a first time user it should be possible to run simulations without
knowing too much about R and implementation details. A simulation of an ecological model
should be as easy as fitting a linear model in R (see example in Section ??). A number of
memorable “commands”, i.e. a few essential but not overwhelmingly extensive generics for
simulation, printing, plotting and data access, and utility functions accompany this package.
Both the functions and also the simulation models should have meaningful defaults to enable
new users to get almost immediate success and to enable experienced developers to structure
their applications and to avoid unnecessary copy and paste (?).

3. Approach

The approach follows directly from the design goals to provide (i) a standardized structure,
(ii) open and reusable code and (iii) ease of use of “the model”. It is almost self-evident to
apply an object-oriented design, consisting of:

5https://www.swarm.org/
6https://www.mathworks.com/

https://www.systemdynamics.org/
https://www.swarm.org/
https://www.mathworks.com/

4 Ecological Modeling with simecol

1. A general and extensible class description suitable for ecological simulation models that
allows sub-classes for different model families and multiple instances (objects of class
simObj) which can be used simultaneously without interference,

2. Generic functions which work on objects of these classes and behave differently depend-
ing on the model family they work with.

All equations, constants and data needed for one particular simulation should be included in
the model object, with the exception of general and widely needed functions, e.g. numerical
algorithms. In the following sections we first analyse what is generally needed and then
describe the particular approach.

3.1. State space approach

Most ecological models can be formulated by means of a state space representation, known
from statistics and control theory (Figure ??). This applies to dynamic (discrete resp. contin-
uous) systems as well as to static, time independent systems when postulating that the latter
case is a subset. A general description that is valid for both linear and nonlinear systems can
be given as:

ẋ(t) = f(t,x(t),u(t),p) (1)

y(t) = g(t,x(t),u(t),p) (2)

where x is the state of the system and ẋ its first derivative, t the time, u(t) is the input vector
(or vector of boundary conditions), and y is the output vector. The functions f and g are the
state transition function and the observation function, respectively, which rely on a vector p
of constant parameters.

A simulation of a dynamic system is obtained by applying a suitable numerical algorithm to
the function f . This algorithm can be a simple iteration or, when f is a system of ordinary
differential equations, an appropriate ODE solver or a function giving an analytical solution.

Compared to the usual statistical models in R, ecological models are more diverse in their
structure and exhibit tight relationships between procedural code (methods, equations) and
data. Non-trivial ecological models are based on more or less modular building blocks (sub-
models), which are either base equations or complex models themselves.

3.2. The simObj specification

In essence, what do we need to implement a not too narrow class of ecological models? We
need self-contained objects derived from classes with suitable properties and methods (data
slots and function slots) resulting from the state space description: state variables, model
equations and algorithms, model parameters (constants), input values, time steps, the name
of an appropriate numerical algorithm (solver), and an optional set of possibly nested sub-
models (sub-equations). These parts are implemented as slots of the simObj class from which
subclasses for different model families can inherit (Figure ??).

A small set of supporting functions is provided to work with these objects, namely:

Thomas Petzoldt, Karsten Rinke 5

Figure 1: State space diagram of a dynamic system (x(t): state vector of the system, x(t0)
initial state, ẋ: first derivative of the state vector, u: input matrix, y(t): model output, f
state transition function, g observation function, p constant parameters of f and g), figure
redrawn after ?, see also ? and ?.

initfunc: function

lv

upca conway stochCA

diffusion

odeModel

init: numeric

parms: numeric

gridModel

init: matrix

parms: list

rwalkModel

init: ANY

parms: list

lv3

Generic Functions

general
 sim(simObj, ...)

 plot(simObj, ...)

 initialize

...

accessor functions
 parms(simObj),

 "parms<-"(simObj, value)

 fixParms(simObj)

 ...

Solvers
 euler, rk4, lsoda, iteration

Utility Functions
 neighbors, fromtoby, ...

Base class

Subclasses

Example
Objects

list of functions

simObj

main: function

equations list

times: numeric

init: ANY

parms: ANY

inputs: ANY

solver: character

myModel

init: ...

parms: ...

user defined
model family

out: ANY

Figure 2: Class diagram of simObj and related classes. The subclasses and example model
objects are provided as reference for user-defined and future extensions.

6 Ecological Modeling with simecol

❼ Generic functions for simulation, printing, plotting, slot manipulation (accessor func-
tions) and object creation (initialize functions),

❼ Utility functions, e.g. neighborhood relations for cellular automata.

3.3. Generic functions

In the S4 class model of the S language methods are based on generic functions. They specify
the behavior of a particular function, depending on the class of the function arguments (?).
All generic functions in simecol are defined as default methods for the class simObj and
specific methods exist if necessary for subclasses. If new subclasses are defined for additional
model families by the user it may be necessary to create new methods that work with these
user-defined data types and provide the required functionality.

Simulation

The core function to work with simObjects is the generic function sim(simObj, ...), which,
for dynamic systems, simulates an initial value problem using the initial state, boundary
conditions, equations and parameters stored in one particular simObj instance by calling the
numerical algorithm referred by its name in the solver slot of simObj. Common for all
versions of sim is the pass-back modification behavior, i.e. a modified version of the original
simObj is returned with a newly added or updated slot out holding the simulation results:

R> library("simecol")

R> data(lv, package = "simecol")

R> lv <- sim(lv)

R> plot(lv)

R> o1 <- out(lv)

The functionality of sim can vary for different subclasses of simObj e.g. odeModel, gridModel,
rwalkModel. This behavior results mainly from a different data structure of the state variables
and the set of numerical algorithms that are adequate for a given family of ecological models.
Whereas ODE models have a vector for state and a data frame for outputs, grid models may
have a grid matrix for state and a list of grids (one grid per time step) as output, and finally,
random walk models may have a list for the initial state of the particles and a list of lists for
the output.

The returned simObj can be printed and plotted directly with appropriate functions, the
simulation results can be extracted with out or the resulting simObj can be used in another
simulation with modified data or functionality.

Accessor functions

Similar to the out function other accessor functions are available for all slots with (in opposite
to out) not only read but also write access. These functions are used similarly like the base
function names and work with the appropriate data structures, see help files for details. The
functions allow to change either the whole content of the respective slot or to change single
elements, e.g. parameter values, time steps or equations. For example, the following will
change only the parameter value of k1:

Thomas Petzoldt, Karsten Rinke 7

R> parms(lv)

k1 k2 k3

0.2 0.2 0.2

R> parms(lv)["k1"] <- 0.4

An entirely new parameter is added to the parameter vector via:

R> parms(lv)["a"] <- 1

R> parms(lv)

k1 k2 k3 a

0.4 0.2 0.2 1.0

Elements can be deleted when a modified version of the parameter vector is assigned:

R> parms(lv) <- parms(lv)[-4]

R> parms(lv)

k1 k2 k3

0.4 0.2 0.2

The behavior is analogous for all other slots with the exception of out, given that the correct
data type for the respective slot (vector, list or matrix) is used.

In addition to the command line accessor functions, graphical Tcl/Tk versions exist (editParms,
editTimes, editInit)7, however, more complex data types cannot be handled yet by these
functions.

Numerical algorithms

In order to simulate ecological models of various types, the appropriate numerical algorithms
can be plugged into the sim function either by using an existing function, e.g. from this
package, by imported solvers of package deSolve or by user-defined algorithms.

The algorithm used for one particular simObj is stored as character string in the solver

slot of the object. User-defined algorithms have to provide interfaces (parameter line, output
structure) and functionality (see below) that fit into the respective object specification and
are compatible to the data structures of the particular class.

3.4. Utility functions

A few utility functions are provided for overcoming frequently occuring problems. However,
it is not planned to overload simecol with numerous utilities as most of them are application-
specific. Additional supporting functions should be written in the user workspace when they
are needed or may be included in optional packages.

7These functions replace the deprecated fixFoo functions, e.g. fixParms. Use foo <- editParms(foo)

instead of fixParms(foo)

8 Ecological Modeling with simecol

Interpolation

Dynamic systems often require interpolation of input data. This is particularly important
for ODE solvers with automatic step size adjustment and there are cases where excessive
interpolation outweighs the advantages of automatic step size determination.

The performance of linear approximation is crucial and we found that the performance of
the respective functions from the base package can be increased if approxfun is used instead
of approx, if matrices are used instead of data frames and if the number of data (nodes)
in the inputs is limited to the essential minimum. In addition to this, two special versions
approxTime and approxTime1 provided by simecol may be useful, see the help file for details.

Neighborhood functions

The computation of neighborhood is time critical for cellular automata. Two C++ functions,
eightneighbors (direct neighbors) and neighbors (generalized neighborhood with arbitrary
weight matrices) are provided for rectangular grids. The implementation of these functions
is straightforward and may serve as a starting point for even more efficient solutions or other
grid types, for example hexagonal or 3D grids.

Neighborhood functions can also be used for spatially explicit models. Models of this family
commonly include both, an explicit spatial representation of organisms (in most cases with
real-valued locations) and a grid-based representation of environmental factors (??).

3.5. Example models

A set of small ecological models is supplied with the package. These models are intended
as a starting point for testing the package and for own developments. The models are pro-
vided in two versions, as binary objects in the data directory and in full source code in the
directory “examples”. The number of example models is intentionally limited and will grow
only moderately in the future. In addition to this, ecological models which follow the simObj
specification are well suited to be published and shared between scientists either as single
code objects or in domain specific packages.

Thomas Petzoldt, Karsten Rinke 9

CA <- new("gridModel",

main = function(time, init, parms) {

z <- init

nb <- eightneighbors(z)

pgen <- 1 - (1 - parms$pbirth)^nb

zgen <- ifelse(z == 0 &

runif(z) < pgen, 1, 0)

zsurv <- ifelse(z >= 1 &

runif(z) < (1 - parms$pdeath),

z + 1, 0)

zgen + zsurv

},

parms = list(pbirth = 0.02, pdeath = 0.01),

times = c(from = 1, to = 50, by = 1),

init = matrix(0, nrow = 40, ncol = 40),

solver = "iteration"

)

init(CA)[18:22,18:22] <- 1

row

co
lu

m
n

10

20

30

10 20 30

0

10

20

30

40

50

Figure 3: Stochastic cellular automaton, source code (left) and after 50 iterations (right).

4

4. Two introductory examples

4.1. Cellular automaton

At the first level of experience, users can simply explore example models supplied with the
package or provided by other users without carrying too much on implementation details.
They can be loaded with source from harddisk or the Internet, for example the stochastic
cellular automaton shown in Figure ??:

R> #library("simecol")

R> data(CA, package="simecol")

R> CA <- sim(CA)

R> plot(CA)

Note, that the sim function uses pass-back modification, i.e. the result is the complete simObj
with the model outputs inserted. The advantage is that the resulting simObj is consistent, i.e.
the model output corresponds to the equations, parameters and other settings of the simObj.
Now, the settings may be inspected and changed, e.g. the number of time steps:

R> times(CA)

R> times(CA) <- c(to=100)

R> CA <- sim(CA)

R> plot(CA)

10 Ecological Modeling with simecol

4.2. Predator-prey model

A second built-in demonstration example of simecol, is the elementary Lotka-Volterra predator-
prey model, which can be given by two ordinary differential equations:

dX1

dt
= k1X1 − k2X1X2 (3)

dX2

dt
= −k3X2 + k2X1X2 (4)

In order to reproduce a schoolbook example two scenarios may be created by modifying two
copies (clones) of lv:

R> #library("simecol")

R> data(lv, package="simecol")

R> lv1 <- lv2 <- lv

We now inspect default settings of initial values and parameters, modify them as required for
lv2 and simulate both scenarios:

R> init(lv1)

prey predator

0.5 1.0

R> parms(lv1)

k1 k2 k3

0.2 0.2 0.2

R> parms(lv2)["k3"] <- 0.1

R> lv1 <- sim(lv1)

R> lv2 <- sim(lv2)

The outputs of lv1 and lv2 can be compared visually using the plotting method of the
odeModel class (plot(lv1)) or with regular plotting functions after extracting the outputs
(Figure ??). It is quite obvious that scenario 1 produces stable cycles and that scenario 2 is
at equilibrium for the given initial values and parametrization, because of:

dX1

dt
= 0.2 · 0.5− 0.2 · 0.5 · 1= 0 (5)

dX2

dt
= −0.1 · 1 + 0.2 · 0.5 · 1= 0 (6)

It is a particular advantage of R, that the complete set of statistical functions is immediately
available, e.g. to inspect summary statistics like the range:

Thomas Petzoldt, Karsten Rinke 11

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Scenario 1

Time

P
re

y,
 P

re
da

to
r

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Scenario 2

Time
P

re
y,

 P
re

da
to

r

Prey
Predator

Figure 4: Two scenarios of a basic Lotka-Volterra model. Scenario 1 (left) shows stable
cycles, Scenario 2 (right) is at equilibrium.

R> sapply(o1[c("predator", "prey")], range)

predator prey

[1,] 0.5001358 0.500000

[2,] 1.7563205 1.755704

R> sapply(o2[c("predator", "prey")], range)

predator prey

[1,] 1 0.5

[2,] 1 0.5

The identity of the lower and upper limits for scenario 2 confirm the equilibrium state. More-
over, the period length of the cycles of scenario 1 can be analysed by means of spectral
analysis:

R> tlv <- times(lv1)

R> ots <- ts(o1[c("predator", "prey")], start=tlv["from"],

+ end=tlv["to"], deltat=tlv["by"])

R> sp <- spectrum(ots, spans=c(3,3), log="no")

R> 1/sp$freq[sp$spec[,1] == max(sp$spec[,1])]

[1] 36

which yields an estimated period length of approximately 36 time units.

12 Ecological Modeling with simecol

Table 1: Implementation example of the elementary Lotka-Volterra model

lv <- new("odeModel",

main = function (time, init, parms, ...) {

x <- init

p <- parms

dx1 <- p["k1"] * x[1] - p["k2"] * x[1] * x[2]

dx2 <- - p["k3"] * x[2] + p["k2"] * x[1] * x[2]

list(c(dx1, dx2))

},

parms = c(k1=0.2, k2=0.2, k3=0.2),

times = c(from=0, to=100, by=0.5),

init = c(prey=0.5, predator=1),

solver = "rk4"

)

5. Implementation of simecol models

5.1. Lotka-Volterra model

The implementation of the Lotka-Volterra equations is straightforward and results in a com-
pact S4 object (Table ??). The two equations (Eq. ??, ??) can easily be put into the main
function and there is no need for sub-equations. The code can be made even simpler without
the two assignments at the beginning of main, but with respect to more structured models
we found it generally advantageous to keep the default values of the names in the parameter
line and on the other hand to use common symbols in the equations.

5.2. Models with nested subequations

For large models with numerous equations or for models with alternative (i.e. exchangeable)
submodels it may be preferable to use a separate structure. Although simecol principally
allows implementing subroutines as local functions of the main slot or even directly in the
user workspace such a strategy would not be in line with our design goals. Instead, the
equation-slot of the simObj class definition provides the structure where relevant submodels
and model equations are stored. Consequent usage of the equation slot helps to increase the
readability of the main function, leads to more structurized code and complies with the object-
oriented paradigm. Moreover, the equation slot can be used to store alternative submodels,
see Table ?? for a small example.

In this example, two versions of the functional response can be enabled alternatively by
assigning one of f1 or f2 to f via equations (last line of the Table ??) and with the same
mechanism it is possible to introduce further functional response curves.

The example shows also several techniques for scoping: (i) the parameter vector is “unpacked”

Thomas Petzoldt, Karsten Rinke 13

Table 2: Uniform Period Chaotic Amplitude Model after ?. Note that function f1 is nested
within f2.

upca <- new("odeModel",

main = function(time, init, parms) {

with(as.list(c(init, parms)), {

du <- a * u - alpha1 * f(u, v, k1)

dv <- -b * v + alpha1 * f(u, v, k1) - alpha2 * f(v, w, k2)

dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

list(c(du, dv, dw))

})

},

equations = list(

f1 = function(x, y, k){x * y}, # Lotka-Volterra

f2 = function(x, y, k){f1(x, y, k) / (1 + k * x)} # Holling II

),

times = c(from=0, to=100, by=0.1),

parms = c(a=1, b=1, c=10, alpha1=0.2, alpha2=1,

k1=0.05, k2=0, wstar=0.006),

init = c(u=10, v=5, w=0.1),

solver = "lsoda"

)

equations(upca)$f <- equations(upca)$f1

using with8, (ii) parameters are explicitly passed to subequations and (iii) slot functions of
equations can be used without explicit pass through, a functionality that is provided by the
solver functions. The result is, that all elements of the equations slot are visible within
main and within all other functions of equations.

5.3. Input data

The simulation models presented so far are autonomous, i.e. they have no external forcing data
(matrix u in Figure ??). Such time dependent data, e.g. food availability or meteorological
conditions, which are required in many practical cases can be provided in the inputs slot.
In order to give a minimal example we may create a new odeModel by modifying a clone
lv_ef of the elementary predator-prey model. To enable external forcing a modified version
of the main slot is introduced, that simulates substrate (S) dependent growth of the prey
population:

R> lv_ef <- lv

R> main(lv_ef) <- function (time, init, parms, ...) {

8This requires conversion of the parameter vector into a list. Parameter vectors are only used in the
odeModel class to ease implementation of teaching models, all other classes natively use lists.

14 Ecological Modeling with simecol

+ x <- init

+ p <- parms

+ S <- approxTime1(inputs, time, rule=2)["s.in"]

+ dx1 <- S * p["k1"] * x[1] - p["k2"] * x[1] * x[2]

+ dx2 <- - p["k3"] * x[2] + p["k2"] * x[1] * x[2]

+ list(c(dx1, dx2))

+ }

For linear interpolation the utility function approxTime1 is used here to read the input at
correct time steps from the input matrix, which can be given as:

R> inputs(lv_ef) <- as.matrix(data.frame(

+ time = c(0, 30, 30.1, 100),

+ s.in = c(0, 0, .5, .5)

+))

Note, that inputs are converted into a matrix for performance reasons because otherwise
repeated conversions were performed by approxTime1, or similarly by approx, which would
be time consuming, especially for larger input data sets.

The resulting model can then be easily simulated and plotted and results in Figure ??:

R> o <- out(sim(lv_ef))

R> matplot(o$time,o[2:3], xlab="Time",

+ ylab="Substrate, Prey, Predator", type="l",

+ lty=c("solid", "dashed"), col=c("blue", "red"), las=1)

R> inp <- as.data.frame(inputs(lv_ef))

R> lines(inp$time, inp$s.in, col="darkgreen", lwd=2, lty="11")

5.4. Initializing

Sometimes, it may be required to perform computations while initializing a simObj. This may
be either required to ensure consistency between different slots (e.g. parameters, inputs and
initial values) to perform error checking or to create non-deterministic variants. Initializing
methods, which exist in R as class methods of the generic initialize, are called either
explicitly or implicitly during object creation. The syntax allows, in principal, two different
modes of use. One can either provide all slots of the object in creation as named arguments
to new or one can provide an existing simObj as the first un-named argument to initialize

in order to get a re-initialized clone.9

In the case of simObj this mechanism is extended by an optionally existing function slot
initfunc, which is executed during the object creation process. Object creation is then as
follows: in the first step an incomplete object is created internally via new according to the
slots given and in the second step this object in creation is passed to the obj argument of
initfunc which performs the final steps and returns the complete object.

9Initialization is now done automatically before each call to sim (introduced in version 0.6).

Thomas Petzoldt, Karsten Rinke 15

0 20 40 60 80 100

0

1

2

3

4

5

Time

S
ub

st
ra

te
, P

re
y,

 P
re

da
to

r

Figure 5: Externally forced predator-prey model (prey: blue, solid; predator: red, dashed)
with resource (green dotted line).

Table 3: Predator-prey simulation with stochastic input variables. The example is derived
from the externally forced object lv_ef. An initialisation function initfunc is provided
which is called by initialize and returns a re-initialized obj with a new random sample
of input values. The utility function fromtoby is used to expand the time vector from its
compact form c(from=, to=, by=) into a sequence.

lv_efr <- lv_ef

tt <- fromtoby(times(lv_efr))

o <- matrix(0, nrow=length(tt), ncol=10)

initfunc(lv_efr) <- function(obj) {

tt <- fromtoby(times(obj))

inputs(obj) <- as.matrix(data.frame(

time = tt,

s.in = pmax(rnorm(tt, mean=1, sd=0.5), 0)

))

obj

}

for (i in 1:10) {

lv_efr <- initialize(lv_efr)

lv_efr <- sim(lv_efr)

o[,i] <- out(lv_efr)$prey

}

matplot(tt, o, xlab="Time", ylab="Prey", las=1, type="l")

16 Ecological Modeling with simecol

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

Time

P
re

y

Figure 6: Ten stochastic realizations of the model from Table ??.

It would, of course, also be possible to create a provisional object first and to modify it
afterwards with accessor functions, but initfunc provides a more efficient solution and helps
to ensure consistency, e.g. between parameters and inputs, between times and inputs or
between different state variables.

In the example shown in Table ?? new instances with different stochastic realizations of the
input variables are created and simulated (see Figure ??). Note that initfunc is called
automatically every time, when new instances are created via new or initialize.

6. Creating own models

6.1. The modeling cycle

The modeling process is an iterative cycle of tasks (see ?). It begins with the formulation of
(i) questions and (ii) hypotheses, (iii) the translation of these questions into a specific model
structure, (iv) the implementation of the model in form of computer software, (v) the analysis,
test and (in most cases) revision of the model, and (vi) communication of the model and its
results to the scientific community. Another view is given by ?, who with respect to software
modeling suggested to distiguish three different perspectives:

1. Conceptional perspective,

2. Specification perspective,

3. Implementation perspective.

Thomas Petzoldt, Karsten Rinke 17

These perspectives are complementary to the tasks defined by ? when tasks (i)–(ii) are
regarded as conceptional and task (iii) as specification. In the following we concentrate on
task (iv) to explain by means of a real, but still simple example, how a specified model can
be implemented using R and the simecol software.

6.2. Conceptional perspective: an individual-based model of Daphnia

The scientific purpose of the Daphnia model given here was the analysis of demographic effects
of Daphnia (water flea) populations. Two main hypotheses should be tested:

❼ Size-selective predation leads to an increased population mortality rate, compared to
non-selective predation by fish (?).

❼ In comparison to predictions from the conventional Lotka-Volterra approach the inclu-
sion of demographic effects results in a delayed but then inexpectedly rapid decline of
abundance during periods of food limitation due to ageing effects (?).

Due to a multiple number of important features, the genus Daphnia (water flea) is an out-
standing model organism in limnology, toxicology and population ecology, so results derived
on this example may be of general interest to other areas as well.

The Daphnia model consists of three general parts:

1. A semi-empirical model of temperature and food dependent somatic growth and egg
production derived from laboratory experiments (TeFI = temperature-food-interaction
model) according to ?,

2. An empirical function of egg development time after ?,

3. A non-spatial individual-based simulation of population dynamics.

Individual-based models (IMBs) are a popular technique in ecological modeling (???). It is
our aim to demonstrate how such models can be implemented with simecol.

6.3. Model specification

The state of the system is defined as a sample of individuals, each having four states: age, size,
number of eggs and age of eggs. Population development is dependend on two environmental
variables, food (phytoplankton, given in mg L−1 carbon) and temperature (in ❽). The model
is simulated in fixed time steps (usually 0.1 day) over a period of several days up to a few
months. The time scales are selected with respect to the egg development time, which is
about 4.4 days at 15❽(?).

The life cycle of Daphnia starts with the release of neonate individuals of a given size (L0) from
the brood chamber of the mother into the water. Somatic growth follows the von Bertalanffy
growth equation (?), depending on several empirical parameters. As soon as an individual
reaches a fixed size at maturity (SAM) a clutch of eggs is produced (spawned), whereby the
clutch size (number of eggs) is controlled by food availablility. After a temperature dependend
egg development time the individuals from this clutch are released (hatched) and the cycle is
started again (parthenogenetic, i.e. asexual reproduction).

18 Ecological Modeling with simecol

Mortality can be modelled with arbitrary deterministic or stochastic mortality functions, e.g.
size dependent mortality due to fish predation, but for the first simulation a deterministic fixed
maximum age is used. All equations and parameters are given in detail in ? and although
more elaborate bioenergetic Daphnia models are available in the meantime (??), the relatively
simple model given here should be sufficient for the intended purpose.

6.4. Model implementation

Definition of a user-defined subclass

A subclass for non-spatial individual-based models was not available in past versions of
simecol, but could be easily derived from simObj as class with appropriate data types, in
particular with a data.frame for the table of the individuals stored in init:

R> setClass("indbasedModel",

+ representation(

+ parms = "list",

+ init = "data.frame"

+),

+ contains = "simObj"

+)

Since simecol version 0.8-4 class indbasedModel is a built-in class. The code snippet above
is left in this document as an example how to derive user-defined subclasses.

Implementation of the model equations

The implementation which is provided in Table ?? and ?? starts with the selection of an
appropriate data structure for the state variables. A table of individuals with four columns:
age, size, number of eggs and age of eggs (eggage) is realized as data frame with one row for
each individual. The data frame is initialized with an arbitrary number of start individuals
(e.g. one single juvenile animal in the init slot).

The main function simulates the life cycle of Daphnia and calls the sub-equations live,
survive and hatch which implement the following processes:

live: The age of all individuals and the egg-age for individuals with eggs is incremented by the
actual time step DELTAT. Then, the empirical function tefi is called to estimate length
and potential number of eggs as a function of age, food and temperature. The data frame
of individuals is then updated and for all adult individuals (size> size at maturity, SAM)
which actually have no eggs the appropriate number of eggs is initialized.

survive: The survival function returns the subset of surviving individuals. Note that it is
particularly easy in R to implement survival with the subset function by simply applying
a logical rule to the table of individuals and returning only those rows which match the
condition.

hatch: In a first step the the actual egg age is compared with the egg development time.
Then the total number of mature eggs is counted and a data frame (newinds) with an

Thomas Petzoldt, Karsten Rinke 19

appropriate number of individuals is created (function newdaphnia. Population growth
occurs by appending the data frame with newborns (newinds) to the data frame of the
surviving (inds).

All functions of the life cycle receive the actual table of individuals (init) as their first
argument and return an updated table inds which is then passed back to init.

The model is simulated by iteration over the time vector. Note that in contrast to ODE
models the main function explicitly returns the new state and not derivatives. To account for
this, the iteration algorithm is to be used here and not one of the ODE solvers like euler,
rk4 or lsoda.

A number of constant parameters is needed by the empirical model (see ?, for details), which
are represented as list within the parms slot.

6.5. Model simulation

With the ibm_Daphnia object derived from the indbasedModel class and given as complete
source code in Tables ?? and ?? it is now possible to perform a first simulation:

R> solver(ibm_daphnia) <- "iteration"

R> ibm_daphnia <- sim(ibm_daphnia)

This already works with the iteration method provided by the package, but the default
behavior may not be optimal for the concrete subclass.

One disadvantage here is the fact that the default iteration algorithm stores the complete
state data structure (i.e. the complete data frame) for each time step as list in the out slot.
This behavior is rather memory consuming for individual-based simulations with several hun-
dred or thousand individuals. Moreover, no adequate plotting method is currently available
for such a list of data frames and therefore the default plot(simObj) method simply returns
a warning message.

6.6. Class-specific functions and methods

Depending on the complexity of the model it may be necessary to supply either an own solver
function or a complete sim method. The difference is that only one sim method is available
for one particular class, but several solver functions may be provided as alternatives for one
class, either as S4 methods with different names or as ordinary (non generic) functions.

In most cases it should be sufficient to write class specific solvers, but for complicated data
structures or hybrid model architectures it may be necessary to provide class specific sim

methods. In case of the individual-based Daphnia model, the solver should be of type “itera-
tor” but with additional functionality to reduce the amount of data stored in out. To do this,
mysolver given in Table ?? has a local function observer, which for each time step returns
one line of summary statistics for all individuals. Additionally, it would be also possible to
write data to logfiles, to print selected data to screen or to display animated graphics during
simulation.

The argument naming of the solver functions is compatible with the ODE solvers of the
deSolve-package with respect to the first four arguments. Moreover, some essential function-
ality must be provided by all solvers:

20 Ecological Modeling with simecol

1. Extraction of slots of the simObj (argument y) to local variables, expansion of y@times
via fromtoby, attach and detach for the list of equations as given in the example,

2. Iteration loop or any other appropriate numeric algorithm,

3. Assignment of the special parameter DELTAT (optional, if needed by the model),

4. Accumulation of essential simulation results to the outputs (out-slot) and assignment
of explanatory variable names, in this case done by observer.

Depending on the data structure, it is also possible to write a class specific plot function:

R> setMethod("plot", c("indbasedModel", "missing"), function(x, y, ...) {

+ o <- out(x)

+ par(mfrow=c(2, 2))

+ plot(o$times, o$meanage, type="l", xlab="Time", ylab="Mean age (d)")

+ plot(o$times, o$meaneggs, type="l", xlab="Time", ylab="Eggs per individual")

+ plot(o$times, o$number, type="l", xlab="Time", ylab="Abundance")

+ plot(o$times, o$number, type="l", xlab="Time", ylab="Abundance", log="y")

+ })

6.7. Model application

Now, the model can be simulated and used for the intended application, e.g. hypothesis
testing, parameter estimation or scenario analysis:

R> solver(ibm_daphnia) <- "myiteration"

R> ibm_daphnia <- sim(ibm_daphnia)

R> plot(ibm_daphnia)

It is beyond the scope of this paper to provide an overview over simulation techniques or to
answer domain specific questions about Daphnia population dynamics; however, the following
example is intended to give an impression how simecol models can be used in practice. The
example deals with the effect of size-selective predation, similar to the more extensive analysis
of ?. Four scenarios will be compared:

Sc0: no mortality at all,

Sc1: constant mortality (independent of body length),

Sc2: small individuals preferred (typical for invertebrate predators like Chaoborus, phantom
midge larvae),

Sc3: large individuals preferred (typical for adult fish).

At the first step we create one clone of the daphnia_ibm-object, assign settings common to
all scenarios and an initial sample population:

Thomas Petzoldt, Karsten Rinke 21

0 10 20 30 40 50 60

0
2

4
6

8
10

Time

M
ea

n
ag

e
(d

)

0 10 20 30 40 50 60

0
1

2
3

4

Time

E
gg

s
pe

r
in

di
vi

du
al

0 10 20 30 40 50 60

0
10

00
0

20
00

0
30

00
0

40
00

0

Time

A
bu

nd
an

ce

0 10 20 30 40 50 60

1
10

10
0

10
00

10
00

0

Time

A
bu

nd
an

ce

Figure 7: Result of the plot method of the Daphnia model, top: mean age of the population
and number of eggs indicating synchronized population development; bottom: exponential
population growth in linear resp. logarithmic scale.

R> Sc0 <- ibm_daphnia

R> times(Sc0) <- c(from=0, to=30, by=0.2)

R> parms(Sc0)[c("temp", "food", "mort")] <- c(15, 0.4, 0.1)

R> init(Sc0) <- data.frame(age=rep(10, 50), size = rep(2.5, 50),

+ eggs=rep(5, 50), eggage=runif(50, 0, 4))

Then we replace the default survive-function with a more general one which depends on a
user-specified mortality function fmort:

R> equations(Sc0)$survive = function(inds, parms) {

+ abundance <- nrow(inds)

+ rnd <- runif(abundance)

+ mort <- fmort(parms$mort, inds$size) * parms$DELTAT

+ subset(inds, rnd > mort)

+ }

Copies of object Sc0 are created and modified according to the scenario specification. In the
example below we have two functions with constant mortality and two other functions where
per capita mortality is higher for the larger or smaller individuals, respectively:

22 Ecological Modeling with simecol

0 5 10 15 20 25 30

10

20

50

100

200

500

1000

2000

5000

Time

A
bu

n
d

an
ce

Sc0: no mortality, r = 0.11
Sc1: random mort. r = 0.01
Sc2: small pref. r = 0.07
Sc3: large pref. r = −0.05

Figure 8: Time series of Daphnia abundance for different scenarios with non-selective resp.
size selective mortality. Population growth rates (r in d−1) were approximated by log-linear
regression for all data points after an initial period of 10 days.

R> Sc1 <- Sc2 <- Sc3 <- Sc0

R> equations(Sc0)$fmort <- function(mort, x) 0

R> equations(Sc1)$fmort <- function(mort, x) mort

R> equations(Sc2)$fmort <- function(mort, x){

+ mort * 2 * rank(-x) / (length(x) + 1)

+ }

R> equations(Sc3)$fmort <- function(mort, x){

+ mort * 2 * rank(x) / (length(x) + 1)

+ }

Finally, the scenarios can be simulated, either line by line as in Section ?? or listwise with
lapply:

sc <- lapply(list(Sc0=Sc0, Sc1=Sc1, Sc2=Sc2, Sc3=Sc3), sim)

The result shows very clearly the influence of demography on population growth (Figure ??).
Given that the population growth rate r without any mortality (i.e. equal to the birth rate b)
is approximately 0.11d−1 in Sc0 and the mortality rate d is set to 0.1d−1, it is plausible that
the population growth rate in Sc1 is:

r = b− d ≈ 0.01d−1

Thomas Petzoldt, Karsten Rinke 23

In case of size-selective predation, demography has to be taken into account in order to get
realistic estimations of r. The simulation shows an increased population loss in case of fish
predation (Sc3, r = −0.05) and a lower effect in case of Chaoborus (Sc2, r = 0.07). Please
see ?? for details and how the results may depend on fecundity of the prey, the shape of the
selection function and the dynamics of predator and prey.

7. Discussion

The main contribution of the simecol package is the proposal of a generalized, declarative
structure to describe ecological models. This structure was inspired by the state space repre-
sentation used in control theory and is intended as a pragmatic solution to unify the upcoming
diversity of R implementations of ecological models. The object-oriented simObj structure
may be useful also in other areas and for other models like continuous-time Markov processes
and stochastic differential equations.

With the set of examples presented and some additional models developed in our workgroup,
the matrix-oriented R language was found to be well suited for model development (rapid
prototyping) and model evaluation. According to our experience, a structured OOP style is
more efficient compared to a purely functional style, or even worse, ad-hoc programming.

The functional OOP system of R is different from languages like JAVA or C++ and the
approach of generic functions for common tasks seems to be more appropriate for statistical
data analysis than for ecological simulation models which have not only variable data but also
variable code. Moreover, the lack of references and the invisibility of member variables in slot
functions of the same object was seemingly inconvenient and needed re-thinking. However,
the R language with its Scheme heritage (?) is a “programmable programming language”.
Lexical scoping and local environments (?) allow to change its default behavior if needed.
There were temptations to apply an alternative OOP paradigm that allows for references
e.g. R.oo (?) or proto (?), but it was decided to stay with the default behavior as much
as possible. Similarly, we used only flat object hierarchies and abandoned delegation-based
approaches and instead suggest cloning (creation time sharing) as a standard technique to
create derived objects.

At a first look R seems to be less suited for large applications, e.g. turbulence models, where C
and FORTRAN are standard or for complex individual-based simulations with large numbers
of interacting individuals, where class-based OOP in the flavor of C++ or JAVA is regarded
as more natural (?). However, even such applications can take advantage of simecol, either
because of vectorization in R (subset is in fact highly efficient) or due to the possibility
to embed compiled code as shared library. For large applications or external simulation
programs, simecol objects can be constructed as an interface provided that the external
program is open enough to be linked or at least is callable in batch mode.

The package is designed to be open for local extensions and further evolution of the package
itself. A limited number of classes will follow, e.g. for individual-based models similar to
the Daphnia example or for purely statistical models like neural networks. An integrated
parameter estimation functionality may follow as well as an interface to quantitative and
qualitative model evaluation criteria (?). Moreover, interfaces to other promising approaches
to solve simulation models in R may be worth to be established, e.g. to the XML based
description language of the bioconductor package SBMLR (?), or to the nonlinear mixed

24 Ecological Modeling with simecol

effects modelling package nlmeODE of ? who independently developed a similar list-based
object structure for a class of ordinary differential equation models.

Another appealing approach is the stoichiometry-matrix based approach for ODE models of
aquatic systems (wastewater treatment, biofilm, rivers and lakes, https://www.eawag.ch/
organisation/abteilungen/siam/lehre/Modaqecosys/). These R scripts, developed by a
prominent group in water modeling (e.g. ??), are currently used for teaching of aquatic mod-
eling together with model assessment like sensitivity and uncertainty analysis, optimization,
and frequentist or Bayesian model tests.

Our work presented so far can serve as a starting point and demonstrates, that R together
with OOP is well suited as a medium for the development, distribution and share of ecological
modeling code. Reference applications and utility functions will help ecologists to structure
their work. The open source license of R and its accompanying packages should encourage
own applications, which remain under complete control of the developer. Moreover, the
intentionally lightweight character of simecol and the compact code of the solutions would
enable the user to unhinge his model from simecol whenever required and to port it to other
systems. As a conclusion, one can make nothing wrong when starting to model with R but it
may be possible that one stays with it for a long time.

Acknowledgments

We wish to express our thanks to Renè Sachse for suggestions while developing his own simecol

models and to the participants of the “Modeling for Limnologists” workshop for testing and
feedback. We are grateful to two anynymous reviewers for their constructive remarks which
helped to improve the manuscript.

https://www.eawag.ch/organisation/abteilungen/siam/lehre/Modaqecosys/
https://www.eawag.ch/organisation/abteilungen/siam/lehre/Modaqecosys/

Thomas Petzoldt, Karsten Rinke 25

Table 4: Individual-basedDaphnia model (part I, class definition, main equation, parameters,
initial state, time steps, solver)

library("simecol")

class indbasedModel is built in since simecol version 0.8-4

setClass("indbasedModel",

representation(parms = "list", init = "data.frame"), contains = "simObj"

)

ibm_daphnia <- new("indbasedModel",

main = function(time, init, parms) {

init <- live(init, parms)

init <- survive(init, parms)

init <- hatch(init, parms)

init

},

parms = list(

parameters of the somatic growth equation

a1 = 1.167, # (mm)

a2 = 0.573, # (mg L^-1)

a3 = 1.420, # (mm)

a4 = 2.397, # (d),

b1 = 1.089e-2, # (d^-1)

b2 = 0.122, # ((deg. C)^-1)

parameters of the clutch size equation

X_max_slope = 23.83, # (eggs)

K_s_slope = 0.65, # (mg L^-1)

beta_min = -29.28, # (eggs)

u_c = 1, # (L mg^-1) unit conversion factor

parameters of the individual-based model

L_0_Hall = 0.35, # (mm) SON (size of neonanates) of Hall data

L_0 = 0.65, # (mm) SON

SAM = 1.50, # (mm) SAM (size at maturity)

maxage = 60, # (d)

constant environmental conditions

temp = 20, # (deg C)

food = 0.5 # (mg L^-1)

),

init = data.frame(age=0, size=0.65, eggs=0, eggage=0),

times = c(from=0, to=60, by=1),

solver = "myiteration", # or default method: "iteration"

equations = list()

)

26 Ecological Modeling with simecol

Table 5: Individual-based Daphnia model (part II, equations and algorithms)

equations(ibm_daphnia) <- list(

newdaphnia = function(SON, n) {

if (n>0) {

data.frame(age = rep(0, n), size = SON, eggs = 0, eggage = 0)

} else {

NULL

}

},

bottrell = function(temp) {

exp(3.3956 + 0.2193 * log(temp) - 0.3414 * log(temp)^2)

},

tefi = function(time, temp, food, parms){

with(parms, {

deltaL <- L_0 - L_0_Hall

k <- b1 * exp(b2 * temp)

L_max <- (a1 * food)/(a2 + food) + a3 - k * a4

L <- L_max - (L_max - L_0_Hall) * exp (-k * time) + deltaL

E <- (X_max_slope * food)/(K_s_slope + food) * L +

beta_min * (1 - exp(-u_c * food))

as.data.frame(cbind(L, E))

})},

live = function(inds, parms){

with(parms,{

ninds <- nrow(inds)

inds$age <- inds$age + DELTAT

inds$eggage <- ifelse(inds$size > SAM & inds$eggs > 0,

inds$eggage + DELTAT, 0)

tefi_out <- tefi(inds$age, temp, food, parms)

inds$size <- tefi_out$L

neweggs <- round(tefi_out$E)

inds$eggs <- ifelse(inds$size > SAM & inds$eggage==0,

neweggs, inds$eggs)

inds

})},

survive = function(inds, parms) subset(inds, inds$age < parms$maxage),

hatch = function(inds, parms) {

newinds <- NULL

with(parms, {

edt <- bottrell(temp)

have.neo <- which(inds$eggs > 0 & inds$eggage > edt)

eggs <- inds$eggs[have.neo]

new.neo <- sum(eggs)

inds$eggs[have.neo] <- inds$eggage[have.neo] <- 0

newinds <- newdaphnia(L_0, new.neo)

rbind(inds, newinds)

})

}

)

Thomas Petzoldt, Karsten Rinke 27

Table 6: Solver function and plot method for the Daphnia model

a more appropriate solver (note the observer function

myiteration <- function(y, times=NULL, func=NULL, parms=NULL,

animate=FALSE, ...) {

observer <- function(res) {

eggs, size, age, eggage

number <- nrow(res)

meansize <- mean(res$size)

meanage <- mean(res$age)

meaneggs <- mean(res$eggs)

c(number=number, meansize=meansize, meanage=meanage, meaneggs=meaneggs)

}

init <- y@init

times <- fromtoby(y@times)

func <- y@main

parms <- y@parms

inputs <- y@inputs

equations <- y@equations

equations <- addtoenv(equations)

environment(func) <- environment()

parms$DELTAT <- 0

res <- observer(init)

out <- res

for (i in 2:length(times)) {

time <- times[i]

parms$DELTAT <- times[i] - times[i-1]

init <- func(time, init, parms)

res <- observer(init)

out <- rbind(out, res)

}

row.names(out) <- NULL

out <- cbind(times, out)

as.data.frame(out)

}

a plotting function that matches the output structure of the observer

setMethod("plot", c("indbasedModel", "missing"), function(x, y, ...) {

o <- out(x)

par(mfrow=c(2, 2))

plot(o$times, o$meanage, type="l", xlab="Time", ylab="Mean age (d)")

plot(o$times, o$meaneggs, type="l", xlab="Time", ylab="Eggs per indiv.")

plot(o$times, o$number, type="l", xlab="Time", ylab="Abundance")

plot(o$times, o$number, type="l", xlab="Time", ylab="Abundance", log="y")

})

RUN the MODEL

ibm_daphnia <- sim(ibm_daphnia)

plot(ibm_daphnia)

28 Ecological Modeling with simecol

Affiliation:

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: https://tu-dresden.de/Members/thomas.petzoldt/

Karsten Rinke
Helmholtz-Centre for Environmental Research - UFZ
Department of Lake Research
Brückstr. 3a
39114 Magdeburg, Germany
E-mail: karsten.rinke@ufz.de
URL: https://www.ufz.de/index.php?en=19635

mailto:thomas.petzoldt@tu-dresden.de
https://tu-dresden.de/Members/thomas.petzoldt/
mailto:karsten.rinke@ufz.de
https://www.ufz.de/index.php?en=19635

