Optimized prediction based on textual sentiment, accounting for the intrinsic challenge that sentiment can be computed and pooled across texts and time in various ways. See Ardia et al. (2021) <doi:10.18637/jss.v099.i02>.
| Version: | 
1.0.1 | 
| Depends: | 
R (≥ 3.3.0) | 
| Imports: | 
caret, compiler, data.table, foreach, ggplot2, glmnet, ISOweek, quanteda, Rcpp (≥ 0.12.13), RcppRoll, RcppParallel, stats, stringi, utils | 
| LinkingTo: | 
Rcpp, RcppArmadillo, RcppParallel | 
| Suggests: | 
covr, doParallel, e1071, lexicon, MCS, NLP, parallel, randomForest, stopwords, testthat, tm | 
| Published: | 
2025-04-03 | 
| DOI: | 
10.32614/CRAN.package.sentometrics | 
| Author: | 
Samuel Borms  
    [aut, cre],
  David Ardia   [aut],
  Keven Bluteau  
    [aut],
  Kris Boudt   [aut],
  Jeroen Van Pelt [ctb],
  Andres Algaba [ctb] | 
| Maintainer: | 
Samuel Borms  <borms_sam at hotmail.com> | 
| BugReports: | 
https://github.com/SentometricsResearch/sentometrics/issues | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
https://sentometrics-research.com/sentometrics/ | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
GNU make | 
| Citation: | 
sentometrics citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
NaturalLanguageProcessing | 
| CRAN checks: | 
sentometrics results |