Package 'rosario'

October 20, 2025

Title A Null Model Algorithm to Analyze Cyclical Data in Ecology

Version 0.1.0
Description Implements a null model analysis to quantify concurrent temporal niche overlap (i.e., activity or phenology) among biological identities (e.g., individuals, populations, species) using the Rosario randomization algorithm Castro-Arellano et al. (2010) <doi:10.1111 j.2041-210x.2010.00031.x="">.</doi:10.1111>
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.3
Imports broom, magrittr, purrr, furrr, future, rlang
<pre>URL https://alrobles.github.io/rosario/</pre>
Suggests rmarkdown, ggplot2, spelling
Depends R (>= $4.1.0$)
LazyData true
Language en-US
NeedsCompilation no
Author Ángel L. Robles-Fernández [aut], Maria A. Hurtado-Materon [aut], Tatiana Velásquez-Roa [aut, ths], Iván Castro-Arellano [cre]
Maintainer Iván Castro-Arellano <ic13@txstate.edu></ic13@txstate.edu>
Repository CRAN
Date/Publication 2025-10-20 19:10:02 UTC
Contents
czekanowski_index 2 ex1 3 get_null_model 3 pianka_index 4

2 czekanowski_index

plot_rosario	. 5
rescale_matrix	. 6
rosario	. 6
rosario_sample	. 7
temp_overlap	. 8
temp_overlap_df	. 8
temp_overlap_matrix	9
temp_overlap_plot	. 10
vec_permutation	. 10
	12

czekanowski_index

Czekanowski overlap index

Description

Index

Computes the Czekanowski index of overlap between two relative-frequency activity profiles p and q:

$$1 - \frac{1}{2} \sum_{i} |p_i - q_i|.$$

Usage

```
czekanowski_index(p, q)
```

Arguments

р	Numeric vector of non-negative relative frequencies (typically sums to 1)		
	scribing the first biological identity data (e.g. activity, population size, etc)		
	across ordered time bins. Standardized use of time intervals through the manual.		
q	Numeric vector of non-negative relative frequencies (same length as p) for the		
	second biological identity across ordered time bins.		

Details

Inputs should be on a *comparable scale*; if your data are raw counts, rescale rows to proportions first (see rescale_matrix()).

Value

A single numeric value in [0, 1] where 0 indicates no overlap and 1 indicates identical profiles.

```
set.seed(1)
n <- 6
p <- rmultinom(1, 20, rep(1, n))[,1]; p <- p / sum(p)
q <- rmultinom(1, 20, rep(1, n))[,1]; q <- q / sum(q)
czekanowski_index(p, q)</pre>
```

ex1 3

ex1

Example temporal activity dataset

Description

An example dataset of 5 biological identities across 12 time intervals. Values represent counts of activity events (e.g., detections or captures) per interval. This dataset is provided for examples and vignettes.

Usage

ex1

Format

A numeric matrix with 5 rows (biological identities) and 12 columns (time intervals):

```
Rows Biological identities (bioID1 ... bioID5)
```

Columns Time intervals (INT1 ... INT12)

Values Counts of activity per identity × interval

Examples

```
ex1 rowSums(ex1) # total activity per biological identity colSums(ex1) # total activity per time interval
```

get_null_model

Null-model test via ROSARIO algorithm randomization

Description

Generates a null distribution of concurrent temporal niche overlap by repeatedly randomizing the input matrix with rosario_sample() and recomputing the mean pairwise overlap (see temp_overlap()).

Usage

```
get_null_model(mat, method, nsim = 1000, parallel = FALSE)
```

Arguments

mat	Numeric matrix (rows = biological identities, columns = ordered time intervals).
method	Character string naming the overlap index to use: "pianka" or "czekanowski".
nsim	Integer number of randomizations to run (default 100).
parallel	Logical. If TRUE, randomizations are executed in parallel using furrr::future_map_dfr()

with a multisession plan set internally.

4 pianka_index

Details

For "czekanowski", rows are rescaled to proportions internally to satisfy the index's assumptions. Randomization preserves each row's temporal autocorrelation by cyclically shifting (and optionally mirroring) its profile; see rosario_sample().

When parallel = TRUE, the function calls future::plan(multisession) internally so that randomizations are distributed across available local sessions. This means the function overrides any previously set future plan. If you need custom control over parallelization (e.g. cluster backends), run the non-parallel mode (parallel = FALSE) and handle parallelism externally.

Value

A list with components:

observed_niche_overlap Mean from all possible pairwise comparisons among biological identities for mat.

p_value A one-sample t.test object comparing null means to the observed value (mu = observed).

null_niche_overlap A tibble/data.frame of simulated mean overlaps (one per randomization).

See Also

```
temp_overlap(), rosario_sample(), temp_overlap_matrix()
```

Examples

```
get_null_model(ex1, method = "pianka", nsim = 10, parallel = FALSE)
```

pianka_index

Pianka's niche-overlap index

Description

Computes Pianka's symmetric index of overlap between two non-negative activity profiles p and q:

$$\frac{\sum_i p_i q_i}{\sqrt{\left(\sum_i p_i^2\right)\left(\sum_i q_i^2\right)}}.$$

Usage

```
pianka_index(p, q)
```

Arguments

р	Numeric vector of non-negative values (counts or relative frequencies) for the
	first biological identity data 1 (e.g. activity, population size, etc) across ordered
	time bins.

q Numeric vector of non-negative values (same length as p) for the second biological identity (e.g. activity, population size, etc) across ordered time bins.

plot_rosario 5

Details

Pianka's index does not require inputs to sum to 1, but both vectors must be non-negative and not all zero.

Value

A single numeric value in [0, 1]; larger values indicate greater overlap.

Examples

```
set.seed(1)
n <- 10
p <- rpois(n, 3); q <- rpois(n, 3)
pianka_index(p, q)</pre>
```

plot_rosario

Diagram of ROSARIO null-model randomizations

Description

Visualizes the first 10 hypothetical time use distributions produced by rosario() for a single biological identity. Each panel displays one hypothetical time use distribution with its cyclic shift shown in dark gray and its mirror image shown in dark red.

Usage

```
plot_rosario(numvec, normalize = TRUE, cols = 4)
```

Arguments

numvec Numeric vector representing a single biological identity' distribution across or-

dered time intervals.

normalize Logical; if TRUE (default) scale each half to sum to 1 (compare shapes, not

totals).

cols Integer; number of panels (hypothetical distributions) per row.

Value

Invisibly, a list with:

- variants the original list from rosario(numvec)
- mat2k_plotted matrix of the plotted variants (min(10, n) × 2k)
- k number of time bins
- indices_plotted which variant indices (1..m) were drawn

6 rosario

Examples

```
one <- c(0,5,0,7,5,13,70,0)
plot_rosario(one, cols = 4)
```

rescale_matrix

Row-wise rescaling of a matrix to relative frequencies

Description

Divides each row by its row sum so that every row sums to 1 (leaving dimnames intact).

Usage

```
rescale_matrix(m)
```

Arguments

m

Numeric matrix; rows are biological identities, columns are time bins (i.e., time resources).

Value

A numeric matrix of the same dimension with each row summing to 1. Rows with a zero sum are left unchanged (resulting in NaN if present).

Examples

```
ex1_rescale <- rescale_matrix(ex1)
rowSums(ex1_rescale)</pre>
```

rosario

Generate cyclic and mirrored permutations of a time series

Description

For a numeric vector, creates the set of cyclic shifts and their mirror images (reverse order), preserving shape but changing location along the cycle. The suite of vectors and mirrors represent a complete set of possible distributions.

Usage

```
rosario(numvec)
```

rosario_sample 7

Arguments

numvec

Numeric vector representing a single biological identity' distributions across ordered time intervals.

Value

A list of numeric vectors with all the permutations in the time series, including the mirror patterns.

See Also

```
vec_permutation(), rosario_sample()
```

Examples

```
rosario(c(40, 25, 18, 10, 5, 2))
```

rosario_sample

ROSARIO randomization of an assemblage matrix

Description

Randomly permutes each row by a uniform cyclic shift of its columns and, with probability 0.5, reverses the order (mirror image). This kind of permutations preserves each biological identity's temporal autocorrelation structure and niche breadth while randomizing location within the cycle.

Usage

```
rosario_sample(mat)
```

Arguments

mat

Numeric matrix with biological identities in rows and ordered time intervals in columns.

Value

A numeric matrix of the same dimension as mat, randomized row-wise.

See Also

```
rosario(), vec_permutation()
```

```
rosario_sample(ex1)
```

8 temp_overlap_df

temp_overlap

Mean concurrent temporal niche overlap

Description

Computes the **mean** of all pairwise overlaps among rows (biological identities) using the chosen index.

Usage

```
temp_overlap(mat, method = c("pianka", "czekanowski"))
```

Arguments

mat Numeric matrix (rows = biological identities, columns = ordered time intervals).

method Overlap index to use: "pianka" or "czekanowski".

Details

For "czekanowski", rows are automatically rescaled to proportions.

Value

A single numeric value (named by the method) equal to the mean of the lower triangle of the pairwise overlap matrix.

See Also

```
temp_overlap_matrix(), get_null_model()
```

Examples

```
temp_overlap(ex1, method = "pianka")
temp_overlap(rescale_matrix(ex1), method = "czekanowski")
```

temp_overlap_df

Convert a square overlap matrix to a tidy pairwise data frame

Description

Tidies a symmetric overlap (or distance) matrix into a three-column tibble/data frame with pairs and values.

Usage

```
temp_overlap_df(mat)
```

temp_overlap_matrix 9

Arguments

mat

Square numeric matrix (typically from temp_overlap_matrix()).

Value

A data frame with columns item1, item2, and distance (terminology follows stats::as.dist()).

Examples

```
d <- temp_overlap_matrix(ex1)
temp_overlap_df(d)</pre>
```

temp_overlap_matrix

Pairwise temporal niche-overlap matrix

Description

Computes all pairwise overlaps among rows (biological identities) using the chosen index.

Usage

```
temp_overlap_matrix(mat, method = c("pianka", "czekanowski"))
```

Arguments

mat Numeric matrix (rows = biological identities, columns = ordered time intervals).

method Overlap index to use: "pianka" or "czekanowski".

Details

For Czekanowski, supply a **row-rescaled** matrix (see rescale_matrix()) or use temp_overlap(), which handles rescaling.

Value

A square symmetric matrix of overlap values with row/colnames copied from mat. The first class of the object is set to the method name.

See Also

```
temp_overlap(), rescale_matrix()
```

```
temp_overlap_matrix(ex1, method = "pianka")
ex1_rescale <- rescale_matrix(ex1)
temp_overlap_matrix(ex1_rescale, method = "czekanowski")</pre>
```

10 vec_permutation

temp_overlap_plot

Plot null-model results for temporal niche overlap

Description

Creates a histogram of simulated mean niche overlap values from a null model (see get_null_model()) and overlays a dashed vertical line indicating the observed mean overlap.

Usage

```
temp_overlap_plot(results)
```

Arguments

results

A list object returned by get_null_model(), containing null_niche_overlap (data frame of simulated overlaps) and observed_niche_overlap (numeric observed value).

Value

A ggplot2 object displaying the null distribution of overlap values with the observed overlap marked.

See Also

```
get_null_model(), temp_overlap()
```

Examples

```
mod <- get_null_model(ex1, method = "pianka", nsim = 100)
temp_overlap_plot(mod)</pre>
```

vec_permutation

Cyclic permutation (rotate) a numeric vector

Description

Returns a cyclic shift of numvec so that position x becomes the first element and the order wraps around the end.

Usage

```
vec_permutation(numvec, x = 1)
```

vec_permutation 11

Arguments

numvec	Numeric vector representing an ordered cycle.
Х	Integer (1-based) index of the new starting position.

Value

A numeric vector of the same length as numvec, rotated so that numvec[x] is first.

```
vec_permutation(1:6, 4) # 4 5 6 1 2 3
```

Index

```
* datasets
    ex1, 3
{\tt czekanowski\_index}, \\ 2
ex1, 3
furrr::future_map_dfr(), 3
get_null_model, 3
get_null_model(), 8, 10
pianka_index, 4
plot_rosario, 5
rescale_matrix, 6
rescale_matrix(), 2, 9
rosario, 6
rosario(), 5, 7
rosario_sample, 7
rosario_sample(), 3, 4, 7
stats::as.dist(),9
temp_overlap, 8
temp_overlap(), 3, 4, 9, 10
temp_overlap_df, 8
temp_overlap_matrix, 9
temp_overlap_matrix(), 4, 8, 9
temp\_overlap\_plot, 10
vec_permutation, 10
vec_permutation(), 7
```