## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----include=FALSE------------------------------------------------------------ library(rix) ## ----eval = FALSE------------------------------------------------------------- # library(rix) # # rix( # r_ver = "4.3.1", # r_pkgs = c("dplyr", "ggplot2"), # ide = "other", # project_path = ".", # overwrite = TRUE # ) ## ----eval = FALSE------------------------------------------------------------- # library(rix) # # rix( # r_ver = "4.2.2", # r_pkgs = "shiny", # ide = "other", # project_path = ".", # overwrite = TRUE # ) ## ----eval = FALSE------------------------------------------------------------- # # k-means only works with numerical variables, # # so don't give the user the option to select # # a categorical variable # vars <- setdiff(names(iris), "Species") # # pageWithSidebar( # headerPanel("Iris k-means clustering"), # sidebarPanel( # selectInput("xcol", "X Variable", vars), # selectInput("ycol", "Y Variable", vars, selected = vars[[2]]), # numericInput("clusters", "Cluster count", 3, min = 1, max = 9) # ), # mainPanel( # plotOutput("plot1") # ) # ) ## ----eval = FALSE------------------------------------------------------------- # function(input, output, session) { # # Combine the selected variables into a new data frame # selectedData <- reactive({ # iris[, c(input$xcol, input$ycol)] # }) # # clusters <- reactive({ # kmeans(selectedData(), input$clusters) # }) # # output$plot1 <- renderPlot({ # palette(c( # "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", # "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999" # )) # # par(mar = c(5.1, 4.1, 0, 1)) # plot(selectedData(), # col = clusters()$cluster, # pch = 20, cex = 3 # ) # points(clusters()$centers, pch = 4, cex = 4, lwd = 4) # }) # }