reportRmd Package

Overview

reportRmd is a package designed to facilitate the reporting of common statistical outputs easily in RMarkdown documents. The package supports pdf, html and word output without any changes to the body of the report. The main features are Table 1 style summaries, combining multiple univariate regression models into a single table, tidy multivariable model output and combining univariate and multivariable regressions into a single table. Single table summaries of median survival times and survival probabilities are also provided. A highly customisable survival curve function, based on ggplot2 can be used to create publication-quality plots. Visualisation plots are also available for bivariate relationships and logistic regression models.

A word of caution:

The reportRmd package is designed to facilitate statistical reporting and does not provide any checks regarding the suitability of the models fit.

Summary statistics

Basic summary statistics

data("pembrolizumab")
rm_covsum(data=pembrolizumab, 
covs=c('age','sex'))
n=94
Age at study entry
Mean (sd) 57.9 (12.8)
Median (Min,Max) 59.1 (21.1, 81.8)
Patient Sex
Female 58 (62)
Male 36 (38)

Set IQR = T for interquartile range instead of Min/Max

rm_covsum(data=pembrolizumab, 
covs=c('age','sex'),IQR=TRUE)
n=94
Age at study entry
Mean (sd) 57.9 (12.8)
Median (Q1,Q3) 59.1 (49.5, 68.7)
Patient Sex
Female 58 (62)
Male 36 (38)

Or all.stats=T for both

rm_covsum(data=pembrolizumab, 
covs=c('age','sex'),all.stats = TRUE)
n=94
Age at study entry
Mean (sd) 57.9 (12.8)
Median (Q1,Q3) 59.1 (49.5, 68.7)
Range (min, max) (21.1, 81.8)
Patient Sex
Female 58 (62)
Male 36 (38)

Summaries By Group

This will produce summary statistics by Sex

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'))
Full Sample (n=94) Female (n=58) Male (n=36) p-value
Age at study entry 0.30
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
PD L1 percent 0.76
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
Did ctDNA increase or decrease from baseline to cycle 3 0.84
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Showing Statistical Tests

To indicate which statistical test was used use show.tests=TRUE

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value StatTest
Age at study entry 0.30 Wilcoxon Rank Sum
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
PD L1 percent 0.76 Wilcoxon Rank Sum
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
Did ctDNA increase or decrease from baseline to cycle 3 0.84 Chi Sq
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Including Effect Sizes

Effect sizes can be added with effSize = TRUE. Effect size measures include the Wilcoxon r for Wilcoxon rank-sum test, Cohen’s d for t-test, Omega for ANOVA, Epsilon for Kruskal Wallis test, and Cramer’s V for categorical variables.

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','change_ctdna_group'),
effSize=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size
Age at study entry 0.30 0.11
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
Did ctDNA increase or decrease from baseline to cycle 3 0.84 0.020
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Parametric vs Non-parametric Comparisons

Group comparisons are non-parametric by default, specify testcont='ANOVA' for t-tests/ANOVA

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1'),
testcont='ANOVA',
show.tests=TRUE, effSize=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size StatTest
Age at study entry 0.39 0.18 t-test, Cohen’s d
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
PD L1 percent 0.63 0.100 t-test, Cohen’s d
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1

Row vs Column Summaries

The default is to indicate percentages by columns (ie. percentages within columns add to 100)

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE)
Full Sample (n=94) Female (n=58) Male (n=36)
Study Cohort
A 16 (17) 3 (5) 13 (36)
B 18 (19) 18 (31) 0 (0)
C 18 (19) 18 (31) 0 (0)
D 12 (13) 7 (12) 5 (14)
E 30 (32) 12 (21) 18 (50)

But you can also specify to show by row instead

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE,
percentage='row')
Full Sample (n=94) Female (n=58) Male (n=36)
Study Cohort
A 16 3 (19) 13 (81)
B 18 18 (100) 0 (0)
C 18 18 (100) 0 (0)
D 12 7 (58) 5 (42)
E 30 12 (40) 18 (60)

Compact summary statistics

Basic summary statistics

rm_compactsum(data = pembrolizumab, xvars = c("change_ctdna_group", "l_size"))
Full Sample (n=94) Missing
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21
Target lesion size at baseline 73.5 (49.2-108.8) 0

Set iqr = T for interquartile range instead of Min/Max

rm_compactsum(data=pembrolizumab, xvars = c("change_ctdna_group", "l_size"), iqr=TRUE)
Full Sample (n=94) Missing
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21
Target lesion size at baseline 73.5 (49.2-108.8) 0

Or all.stats=T for both

rm_compactsum(data=pembrolizumab, xvars = c("change_ctdna_group", "l_size"), all.stats = T)
Full Sample (n=94) Missing
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21
Target lesion size at baseline 0
Mean (sd) 87.9 (59.6)
Median (Q1-Q3) 73.5 (49.2-108.8)
Range (min-max) (11.0-387.0)

Summaries By Group

This will produce summary statistics by Sex:

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex')
Full Sample (n=94) Female (n=58) Male (n=36) p-value Missing
Age at study entry 59.1 (49.5-68.7) 56.6 (45.8-67.8) 61.2 (52.0-69.4) 0.30 0
PD L1 percent 0.0 (0.0-10.0) 0.5 (0.0-13.8) 0.0 (0.0-4.5) 0.76 1
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21 (52%) 19 (58%) 0.84 21

Showing Statistical Tests

To indicate which statistical test was used use show.tests=TRUE

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', show.tests=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Missing pTest
Age at study entry 59.1 (49.5-68.7) 56.6 (45.8-67.8) 61.2 (52.0-69.4) 0.30 0 Wilcoxon Rank Sum
PD L1 percent 0.0 (0.0-10.0) 0.5 (0.0-13.8) 0.0 (0.0-4.5) 0.76 1 Wilcoxon Rank Sum
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21 (52%) 19 (58%) 0.84 21 ChiSq

Including Effect Sizes

Effect sizes can be added with effSize = TRUE. If show.tests = TRUE as well, the effStat will also be shown:

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', effSize = T, show.tests = T)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size (95% CI) Missing pTest effStat
Age at study entry 59.1 (49.5-68.7) 56.6 (45.8-67.8) 61.2 (52.0-69.4) 0.30 0.11 (-0.09, 0.21) 0 Wilcoxon Rank Sum Wilcoxon r
PD L1 percent 0.0 (0.0-10.0) 0.5 (0.0-13.8) 0.0 (0.0-4.5) 0.76 0.03 (-0.18, 0.06) 1 Wilcoxon Rank Sum Wilcoxon r
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21 (52%) 19 (58%) 0.84 0.02 (-0.19, 0.05) 21 ChiSq Cramer’s V

Using Mean Summary Statistic Instead of Median

The default summary statistic for numerical variables is median. To specify which numerical variables should have mean displayed instead, change the use_mean argument. Unspecified xvars will use the default median

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', use_mean = c("pdl1"), effSize = T, show.tests = T)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size (95% CI) Missing pTest effStat
Age at study entry 59.1 (49.5-68.7) 56.6 (45.8-67.8) 61.2 (52.0-69.4) 0.30 0.11 (-0.09, 0.21) 0 Wilcoxon Rank Sum Wilcoxon r
PD L1 percent 13.9 (29.2) 15.0 (30.5) 12.1 (27.3) 0.63 0.10 (-0.36, 0.20) 1 t-test Cohen’s d
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21 (52%) 19 (58%) 0.84 0.02 (-0.20, 0.05) 21 ChiSq Cramer’s V

Custom Digits Argument

The digits and digits.cat arguments can be changed to a custom numerical value. The default digits is 1, the default digits.cat is 0

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','change_ctdna_group'), grp = 'sex', use_mean = c("pdl1"), digits = 2, digits.cat = 1, effSize = T, show.tests = T)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size (95% CI) Missing pTest effStat
Age at study entry 59.12 (49.54-68.71) 56.64 (45.80-67.83) 61.16 (51.99-69.44) 0.30 0.11 (-0.09, 0.21) 0 Wilcoxon Rank Sum Wilcoxon r
PD L1 percent 13.90 (29.24) 15.02 (30.55) 12.06 (27.26) 0.63 0.10 (-0.38, 0.20) 1 t-test Cohen’s d
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (54.8%) 21 (52.5%) 19 (57.6%) 0.84 0.02 (-0.17, 0.05) 21 ChiSq Cramer’s V

To specify custom digit arguments for different numerical variables, change the digits argument. Unspecified variables will use the default value.

rm_compactsum(data=pembrolizumab, xvars=c('age','pdl1','l_size'), grp = 'sex', digits = c("age" = 3, "l_size" = 2), effSize = T, show.tests = T)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size (95% CI) Missing pTest effStat
Age at study entry 59.121 (49.542-68.708) 56.643 (45.800-67.834) 61.164 (51.992-69.438) 0.30 0.11 (-0.08, 0.21) 0 Wilcoxon Rank Sum Wilcoxon r
PD L1 percent 0.0 (0.0-10.0) 0.5 (0.0-13.8) 0.0 (0.0-4.5) 0.76 0.03 (-0.16, 0.06) 1 Wilcoxon Rank Sum Wilcoxon r
Target lesion size at baseline 73.50 (49.25-108.75) 68.00 (44.25-97.75) 93.00 (65.50-121.00) 0.066 0.19 (0.00, 0.36) 0 Wilcoxon Rank Sum Wilcoxon r

Row vs Column Summaries

The default is to indicate percentages by columns (ie. percentages within columns add to 100). But you can also specify to show by row instead

rm_compactsum(data=pembrolizumab, xvars=c('change_ctdna_group','orr'), grp = 'cohort', effSize = T, show.tests = T, percentage = "row")
Full Sample (n=94) A (n=16) B (n=18) C (n=18) D (n=12) E (n=30) p-value Effect Size (95% CI) pTest effStat Missing
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 8 (20%) 7 (18%) 5 (12%) 2 (5%) 18 (45%) 0.18 0.30 (0.20, 0.51) Fisher Exact Cramer’s V 21
Objective Response - SD/PD 78 13 (17%) 18 (23%) 18 (23%) 4 (5%) 25 (32%) <0.001 0.55 (0.76, 1.03) Fisher Exact Cramer’s V 0

Viewing the Self-Generated Description

To view the self-generated description for the summary table:

summary_tab <- rm_compactsum(data=pembrolizumab, xvars=c('change_ctdna_group','orr', 'age'), grp = 'cohort', effSize = T, show.tests = T)
cat(attr(summary_tab, "description"))

Univariate regression

Combining multiple univariate regression analyses into a single table. The function will try to determine the most appropriate model from the data.

rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','pdl1','change_ctdna_group'))
OR(95%CI) p-value N Event
Age at study entry 0.96 (0.91, 1.00) 0.089 94 78
PD L1 percent 0.97 (0.95, 0.98) <0.001 93 77
Did ctDNA increase or decrease from baseline to cycle 3 73 58
Decrease from baseline Reference 33 19
Increase from baseline 28.74 (5.20, 540.18) 0.002 40 39

Simple Linear Regression

If the response is continuous linear regression is the default. Using type = 'linear' will ensure linear regression.

rm_uvsum(data=pembrolizumab, response='l_size',
covs=c('age','cohort'))
Estimate(95%CI) p-value N
Age at study entry -0.58 (-1.54, 0.38) 0.23 94
Study Cohort 94
A Reference 16
B -38.04 (-74.95, -1.13) 0.044 18
C 20.35 (-16.56, 57.26) 0.28 18
D -24.79 (-65.82, 16.23) 0.23 12
E 31.69 (-1.56, 64.95) 0.062 30

Logistic Regression

If the response is binomial, logistic regression will be run (or specified with type = 'logistic').

rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','cohort'))
OR(95%CI) p-value N Event
Age at study entry 0.96 (0.91, 1.00) 0.089 94 78
Study Cohort 94 78
A Reference 16 13
B 7.3e+07 (8.5e-76, NA) 0.99 18 18
C 7.3e+07 (7.7e-74, NA) 0.99 18 18
D 0.12 (0.02, 0.60) 0.015 12 4
E 1.15 (0.21, 5.49) 0.86 30 25

Poisson Regression

If the response is integer, poisson regression will be run (or specified with type = 'poisson').

pembrolizumab$Counts <- rpois(nrow(pembrolizumab),lambda = 3)
rm_uvsum(data=pembrolizumab, response='Counts',covs=c('age','cohort'))
RR(95%CI) p-value N
Age at study entry 1.00 (0.99, 1.01) 0.51 94
Study Cohort 94
A Reference 16
B 0.89 (0.62, 1.28) 0.53 18
C 0.97 (0.68, 1.38) 0.85 18
D 0.94 (0.63, 1.40) 0.77 12
E 0.83 (0.60, 1.16) 0.26 30

offset terms can be specified as well, but must correspond to a variable in the data set

pembrolizumab$length_followup <- rnorm(nrow(pembrolizumab),mean = 72,sd=3)
pembrolizumab$log_length_followup <- log(pembrolizumab$length_followup)
rm_uvsum(data=pembrolizumab, response='Counts',covs=c('age','cohort'),
         offset = "log_length_followup")
RR(95%CI) p-value N
Age at study entry 1.00 (0.99, 1.01) 0.53 94
Study Cohort 94
A Reference 16
B 0.89 (0.62, 1.28) 0.52 18
C 0.99 (0.69, 1.42) 0.97 18
D 0.95 (0.64, 1.42) 0.81 12
E 0.83 (0.60, 1.16) 0.27 30

Negative Binomial Regression

To run negative binomial regression instead specify type = 'negbin'

rm_uvsum(data=pembrolizumab, response='Counts', type='negbin',
         covs=c('age','cohort'),
         offset = "log_length_followup")
RR(95%CI) p-value N
Age at study entry 1.00 (0.99, 1.01) 0.54 94
Study Cohort 94
A Reference 16
B 0.89 (0.61, 1.29) 0.53 18
C 0.99 (0.69, 1.43) 0.97 18
D 0.95 (0.63, 1.42) 0.82 12
E 0.83 (0.60, 1.17) 0.28 30

Survival Analysis

If two response variables are specified and then survival analysis is run (specified with type='coxph').

rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'),
covs=c('age','pdl1','change_ctdna_group'),whichp = "levels")
HR(95%CI) p-value N Event
Age at study entry 0.99 (0.97, 1.01) 0.16 94 64
PD L1 percent 0.99 (0.98, 1.00) 0.026 93 63
Did ctDNA increase or decrease from baseline to cycle 3 73 46
Decrease from baseline Reference 33 14
Increase from baseline 3.06 (1.62, 5.77) <0.001 40 32

Competing Risk

Competing risk models need to be explicitly specified using type='crr'.

rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'),
covs=c('age','pdl1','change_ctdna_group'),
type='crr')
HR(95%CI) p-value N Event
Age at study entry 0.99 (0.97, 1.00) 0.15 94 64
PD L1 percent 0.99 (0.98, 1.00) 0.017 93 63
Did ctDNA increase or decrease from baseline to cycle 3 73 46
Decrease from baseline Reference 33 14
Increase from baseline 3.06 (1.64, 5.69) <0.001 40 32

GEE Models

Correlated observations can be handled using GEE

data("ctDNA")
 rm_uvsum(response = 'size_change',
 covs=c('time','ctdna_status'),
 gee=TRUE,
 id='id', corstr="exchangeable",
 family=gaussian("identity"),
 data=ctDNA,showN=TRUE)
Estimate(95%CI) p-value N
Number of weeks on treatment -0.12 (-0.44, 0.19) 0.44 262
Change in ctDNA since baseline 262
Clearance Reference 134
No clearance, decrease from baseline 61.29 (37.49, 85.09) <0.001 42
No clearance, increase from baseline 82.52 (64.75, 100.28) <0.001 86

Returning Model Objects

If you want to check the underlying models, set returnModels = TRUE

 rm_uvsum(response = 'orr',
 covs=c('age'),
 data=pembrolizumab,returnModels = TRUE)
## $age
## 
## Call:  glm(formula = orr ~ age, family = binomial, data = data)
## 
## Coefficients:
## (Intercept)          age  
##     4.12269     -0.04231  
## 
## Degrees of Freedom: 93 Total (i.e. Null);  92 Residual
## Null Deviance:       85.77 
## Residual Deviance: 82.53     AIC: 86.53

The data analysed can be examined by interrogating the data object appended to each model

mList <-  rm_uvsum(response = 'orr',
 covs=c('age'),
 data=pembrolizumab,returnModels = TRUE)
head(mList$age$data)
## # A tibble: 6 × 18
##   id       age sex   cohort l_size  pdl1   tmb baseline_ctdna change_ctdna_group
##   <fct>  <dbl> <fct> <fct>   <dbl> <dbl> <dbl>          <dbl> <fct>             
## 1 INS-A…  62.1 Male  A         140     2 0.574         114.   Increase from bas…
## 2 INS-A…  62.2 Male  A         108     0 0.921           4.26 Increase from bas…
## 3 INS-A…  70.9 Male  A          11   100 0.375         205.   Decrease from bas…
## 4 INS-A…  57.9 Male  A          39    45 0.824         169.   Increase from bas…
## 5 INS-A…  65.7 Fema… A          90     0 0.114         425.   Decrease from bas…
## 6 INS-A…  60.9 Male  A         124     2 0.717          15.8  Increase from bas…
## # ℹ 9 more variables: orr <fct>, cbr <fct>, os_status <dbl>, os_time <dbl>,
## #   pfs_status <dbl>, pfs_time <dbl>, Counts <int>, length_followup <dbl>,
## #   log_length_followup <dbl>

Adjusting p-values

Multiple comparisons can be controlled for with the p.adjust argument, which accepts any of the options from the p.adjust function.

 rm_uvsum(response = 'orr',
 covs=c('age','sex','pdl1'),
 data=pembrolizumab,p.adjust = 'fdr')
OR(95%CI) p-value N Event
Age at study entry 0.96 (0.91, 1.00) 0.11 94 78
Patient Sex 94 78
Female Reference 58 51
Male 0.41 (0.13, 1.22) 0.11 36 27
PD L1 percent 0.97 (0.95, 0.98) <0.001 93 77

Note: The raw p-value column is suppressed when there are categorical variables with >2 levels, to prevent three columns of p-values from appearing.

Multivariable analysis

To create a nice display for multivariable models the multivariable model first needs to be fit.

By default, the variance inflation factor will be shown to check for multicollinearity. To suppress this column set vif=FALSE. Note: variance inflation factors are not computed (yet) for multilevel or GEE models.

glm_fit <- glm(orr~change_ctdna_group+pdl1+age,
               family='binomial',
               data = pembrolizumab)
rm_mvsum(glm_fit, showN = TRUE, vif=TRUE)
OR(95%CI) p-value N Event VIF
Did ctDNA increase or decrease from baseline to cycle 3 73 58 1.03
Decrease from baseline Reference 33 19
Increase from baseline 23.92 (3.69, 508.17) 0.006 40 39
PD L1 percent 0.97 (0.95, 0.99) 0.011 73 58 1.24
Age at study entry 0.94 (0.87, 1.00) 0.078 73 58 1.23

p-values can be adjusted for multiple comparisons using any of the options available in the p.adjust function. This argument is also available for univariate models run with rm_uvsum.

rm_mvsum(glm_fit, showN = TRUE, vif=TRUE,p.adjust = 'holm')
OR(95%CI) p-value N Event VIF
Did ctDNA increase or decrease from baseline to cycle 3 73 58 1.03
Decrease from baseline Reference 33 19
Increase from baseline 23.92 (3.69, 508.17) 0.018 40 39
PD L1 percent 0.97 (0.95, 0.99) 0.022 73 58 1.24
Age at study entry 0.94 (0.87, 1.00) 0.078 73 58 1.23

Combining univariate and multivariable models

To display both models in a single table run the rm_uvsum and rm_mvsum functions with tableOnly=TRUE and combine.

uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE)

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) p Adjusted OR(95%CI) p (adj)
Age at study entry 0.96 (0.91, 1.00) 0.089
Patient Sex
Female Reference
Male 0.41 (0.13, 1.22) 0.11
PD L1 percent 0.97 (0.95, 0.98) <0.001 0.98 (0.95, 1.00) 0.024
Did ctDNA increase or decrease from baseline to cycle 3
Decrease from baseline Reference Reference
Increase from baseline 28.74 (5.20, 540.18) 0.002 24.71 (4.19, 479.13) 0.004

Note: This can also be done with adjusted p-values, but when combined the raw p-values are dropped.

uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE,p.adjust='holm')

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit,tableOnly = TRUE,p.adjust='holm')

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) p Adjusted OR(95%CI) p (adj)
Age at study entry 0.96 (0.91, 1.00) 0.18
Patient Sex
Female Reference
Male 0.41 (0.13, 1.22) 0.18
PD L1 percent 0.97 (0.95, 0.98) <0.001 0.98 (0.95, 1.00) 0.024
Did ctDNA increase or decrease from baseline to cycle 3
Decrease from baseline Reference Reference
Increase from baseline 28.74 (5.20, 540.18) 0.005 24.71 (4.19, 479.13) 0.007

Changing the output

If you need to make changes to the tables, setting tableOnly=TRUE will return a data frame for any of the rm_ functions. Changes can be made, and the table output using outTable()

mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)
names(mvsumTable)[1] <-'Predictor'
outTable(mvsumTable)
Predictor OR(95%CI) p-value N Event VIF
Did ctDNA increase or decrease from baseline to cycle 3 73 58 1.01
Decrease from baseline Reference 33 19
Increase from baseline 24.71 (4.19, 479.13) 0.004 40 39
PD L1 percent 0.98 (0.95, 1.00) 0.024 73 58 1.01

Combining tables

Tables can be nested with the nestTable() function

cohortA <- rm_uvsum(data=subset(pembrolizumab,cohort=='A'), 
                     response = 'pdl1',
                     covs=c('age','sex'),
                     tableOnly = T)
cohortA$Cohort <- 'Cohort A'
cohortE <- rm_uvsum(data=subset(pembrolizumab,cohort=='E'), 
                     response = 'pdl1',
                     covs=c('age','sex'),
                     tableOnly = T)
cohortE$Cohort <- 'Cohort E'
nestTable(rbind(cohortA,cohortE),head_col = 'Cohort',to_col = 'Covariate')
Estimate(95%CI) p-value N
Cohort A
Age at study entry 2.94 (-0.70, 6.58) 0.10 15
Patient Sex 15
Female Reference 3
Male -40.25 (-96.25, 15.75) 0.14 12
Cohort E
Age at study entry -0.44 (-1.02, 0.15) 0.14 30
Patient Sex 30
Female Reference 12
Male -14.86 (-32.57, 2.85) 0.097 18

Scrollable Tables

If you are rendering to html format you can use the scrollTable function to create a scrollable table. This is useful for tables with many rows. If the output format is not html then a regular table will be displayed.

long_table <- rm_compactsum(data=pembrolizumab,xvars = c(age,sex,cohort,pdl1,tmb,baseline_ctdna,change_ctdna_group,orr,cbr))
scrolling_table(long_table,pixelHeight = 300)
Full Sample (n=94) Missing
Age at study entry 59.1 (49.5-68.7) 0
Patient Sex - Male 36 (38%) 0
Study Cohort 0
A 16 (17%)
B 18 (19%)
C 18 (19%)
D 12 (13%)
E 30 (32%)
PD L1 percent 0.0 (0.0-10.0) 1
log of TMB 0.7 (0.4-1.3) 0
Baseline ctDNA 86.0 (7.5-416.6) 0
Did ctDNA increase or decrease from baseline to cycle 3 - Increase from baseline 40 (55%) 21
Objective Response - SD/PD 78 (83%) 0
Clinical Beneficial Response - PD/SD 70 (74%) 0

Simple Survival Summaries

Displaying survival probabilities at different times by sex using Kaplan Meier estimates

rm_survsum(data=pembrolizumab,time='os_time',status='os_status',
 group="sex",survtimes=seq(12,36,12),survtimeunit='months')
Group Events/Total Median (95%CI) 12months (95% CI) 24months (95% CI) 36months (95% CI)
Female 39/58 14.29 (9.69, 23.82) 0.55 (0.44, 0.69) 0.34 (0.24, 0.50) 0.29 (0.18, 0.45)
Male 25/36 11.24 (6.14, 25.33) 0.50 (0.36, 0.69) 0.31 (0.18, 0.52) 0.27 (0.15, 0.48)
Log Rank Test ChiSq 0.5 on 1 df
p-value 0.46

Survival Times in Long Format

Displaying survival probabilities at different times by sex using Cox PH estimates

rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
 strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) At Risk Events Censored Survival Rate (95% CI)
Overall 94
12 48 44 2 0.53 (0.44, 0.64)
24 24 17 7 0.33 (0.25, 0.45)
Female 58
12 31 26 1 0.55 (0.44, 0.70)
24 16 11 4 0.35 (0.24, 0.50)
Male 36
12 17 18 1 0.51 (0.37, 0.70)
24 8 6 3 0.32 (0.19, 0.52)

Survival Times With Covariate Adjustments

Displaying survival probabilities at different times by sex, adjusting for age using Cox PH estimates

rm_survtime(data=pembrolizumab,time='os_time',status='os_status', covs='age',
 strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) At Risk Events Censored Survival Rate (95% CI)
Overall 94
12 48 44 2 0.54 (0.44, 0.65)
24 24 17 7 0.33 (0.25, 0.45)
Female 58
12 31 26 1 0.56 (0.44, 0.70)
24 16 11 4 0.35 (0.24, 0.50)
Male 36
12 17 18 1 0.51 (0.37, 0.70)
24 8 6 3 0.31 (0.19, 0.53)

Stratified Survival Summary

To combine estimates across strata

rm_survdiff(data=pembrolizumab,time='os_time',status='os_status', 
            covs='sex',strata='cohort',digits=1)
group N Observed Expected Median (95%CI)
Overall 94 64 14.0 (9.0, 20.1)
Female 58 39 43.0 14.3 (9.7, 23.8)
Male 36 25 21.0 11.2 (6.1, 25.3)
Log Rank Test ChiSq = 1.9 on 1 df
stratified by cohort p-value = 0.17

Working with Labels

New in version 0.1.0 is the ability to incorporate variable labels into summary tables (but not yet all plots). If variables contain a label attribute this will be displayed automatically, to disable this set nicenames=F

Variable labels will be shown in the nicenames argument is set to TRUE (the default). Variable labels are set using the label attribute of individual variables (assigned using reportRmd or another package like haven).

reportRmd supports the addition, removal and export of labels using the following functions:

Worked Example

Get some descriptive stats for the ctDNA data that comes with the package. The nicenames argument is TRUE by default so underscores are replaced by spaces

rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
Study Cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

set_labels

If we have a lookup table of variable names and labels that we imported from a data dictionary we can set the variable labels for the data frame and these will be used in the rm_ functions

ctDNA_names <- data.frame(var=names(ctDNA),
                          label=c('Patient ID',
                                  'Study Cohort',
                                  'Change in ctDNA since baseline',
                                  'Number of weeks on treatment',
                                  'Percentage change in tumour measurement'))
ctDNA <- set_labels(ctDNA,ctDNA_names)

rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
Study Cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

set_var_labels

Individual labels can be changed with with the set_var_labels command

ctDNA <- set_var_labels(ctDNA,
                        cohort="A new cohort label")
rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
A new cohort label
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

extract_labels

Extract the variable labels to a data frame

var_labels <- extract_labels(ctDNA)
var_labels
##       variable                                   label
## 1           id                              Patient ID
## 2       cohort                      A new cohort label
## 3 ctdna_status          Change in ctDNA since baseline
## 4         time            Number of weeks on treatment
## 5  size_change Percentage change in tumour measurement

replace_plot_labels

This function will accept a ggplot plot and replace the variable names (x-axis, y-axis and legend) with the variable labels. This is useful for more professional looking plots.

library(ggplot2)
p <- ggplot(data=ctDNA,aes(x=ctdna_status,y=size_change,colour=cohort))+
  geom_point()
replace_plot_labels(p)

clear_labels

Or clear them all

ctDNA <- clear_labels(ctDNA)

Plotting Functions

{width=100%}

Plotting bivariate relationships

These plots are designed for quick inspection of many variables, not for publication. This is the plotting version of rm_uvsum. As of 0.1.1 the variable names will be replaced by variable labels if they exist.

plotuv(data=pembrolizumab, response='orr',
covs=c('age','cohort','pdl1','change_ctdna_group'))

The plotuv function can also be used without a response variable to display summary of variables

plotuv(data = pembrolizumab, covs=c('age','cohort','pdl1','change_ctdna_group'), showN = T)

Plotting survival curves

Survival curves are now ggplot2-based, the older version, ggkmcif is deprecated from version 0.1.0

ggkmcif2(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)

Forest Plots

Similar to rm_uvsum and rm_mvsum, forest plots can be created from univariate or multivariable models. forestplot2 is deprecated from version 0.1.0. Variable labels are not yet incorporated into the forest plots.

This will default to a log scale, but can be set to linear using logScale=FALSE

forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", "l_size"),
data=pembrolizumab, family='binomial')

### Multivariable Model Forest Plot

glm_fit <- glm(orr~change_ctdna_group+pdl1+age,
               family='binomial',
               data = pembrolizumab)
forestplotMV(glm_fit)

Combining univariable and multivariable models into a single plot

UVp = forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age",
 "l_size"), data=pembrolizumab, family='binomial')
 MVp = forestplotMV(glm(orr~change_ctdna_group+sex+age+l_size,
 data=pembrolizumab,family = 'binomial'))
 forestplotUVMV(UVp, MVp)

This can also be done with linear scale odds ratios. Number of subjects and/or number of events can also be turned off, as well as different colours used.

uvFP <- forestplotUV(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'))

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvFP <- forestplotMV(glm_fit)

forestplotUVMV(uvFP,mvFP,showN=F,showEvent=F,colours=c("orange","black","blue"),logScale=F)

Miscellaneous Functions

excelCol

To identify the number of a column given the Excel column header

excelCol(G,AB,Az)
##  G AB AZ 
##  7 28 52

excelColLetters

To identify the Excel header given a columns number

excelColLetters(c(7,28,52))
##    7   28   52 
##  "G" "AB" "AZ"

Options

The following options can be set:

Example:

 rm_uvsum(response = 'baseline_ctdna',
 covs=c('age','sex','l_size','pdl1','tmb'),
 data=pembrolizumab)
Estimate(95%CI) p-value N
Age at study entry 0.82 (-10.13, 11.76) 0.88 94
Patient Sex 94
Female Reference 58
Male 56.61 (-228.71, 341.93) 0.69 36
Target lesion size at baseline 1.21 (-1.12, 3.54) 0.31 94
PD L1 percent -3.50 (-8.27, 1.27) 0.15 93
log of TMB 18.78 (-125.18, 162.74) 0.80 94
 options('reportRmd.digits'=1) 
 
rm_uvsum(response = 'baseline_ctdna',
 covs=c('age','sex','l_size','pdl1','tmb'),
 data=pembrolizumab)
Estimate(95%CI) p-value N
Age at study entry 0.8 (-10.1, 11.8) 0.88 94
Patient Sex 94
Female Reference 58
Male 56.6 (-228.7, 341.9) 0.69 36
Target lesion size at baseline 1.2 (-1.1, 3.5) 0.31 94
PD L1 percent -3.5 (-8.3, 1.3) 0.15 93
log of TMB 18.8 (-125.2, 162.7) 0.80 94

PDF Output

For pdf to be correctly generate when using survival curves it is recommended that the cairo format be used. This can be specified with the following command in the setup code chunk:

knitr::opts_chunk$set(message = FALSE, warning = FALSE,dev="cairo_pdf")

Data Sets

pembrolizumab

Survival status and ctDNA levels for patients receiving pembrolizumab

A data frame with 94 rows and 15 variables:

ctDNA

Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.

A data frame with 270 rows and 5 variables: