Implements the Clustering-Informed Shared-Structure Variational Autoencoder ('CISS-VAE'), a deep learning framework for missing data imputation introduced in Khadem Charvadeh et al. (2025) <doi:10.1002/sim.70335>. The model accommodates all three types of missing data mechanisms: Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). While it is particularly well-suited to MNAR scenarios, where missingness patterns carry informative signals, 'CISS-VAE' also functions effectively under MAR assumptions.
| Version: | 0.0.4 |
| Depends: | R (≥ 4.2.0) |
| Imports: | reticulate, purrr, gtsummary, rlang, ComplexHeatmap |
| Suggests: | testthat (≥ 3.0.0), dplyr, knitr, rmarkdown, tidyverse, kableExtra, MASS, fastDummies, palmerpenguins, glue, withr, ggplot2 |
| Published: | 2026-01-23 |
| DOI: | 10.32614/CRAN.package.rCISSVAE (may not be active yet) |
| Author: | Yasin Khadem Charvadeh [aut], Kenneth Seier [aut], Katherine S. Panageas [aut], Danielle Vaithilingam [aut, cre], Mithat Gönen [aut], Yuan Chen [aut] |
| Maintainer: | Danielle Vaithilingam <vaithid1 at mskcc.org> |
| BugReports: | https://github.com/CISS-VAE/rCISS-VAE/issues |
| License: | MIT + file LICENSE |
| URL: | https://ciss-vae.github.io/rCISS-VAE/ |
| NeedsCompilation: | no |
| CRAN checks: | rCISSVAE results |
| Package source: | rCISSVAE_0.0.4.tar.gz |
| Windows binaries: | r-devel: rCISSVAE_0.0.4.zip, r-release: not available, r-oldrel: not available |
| macOS binaries: | r-release (arm64): rCISSVAE_0.0.4.tgz, r-oldrel (arm64): rCISSVAE_0.0.4.tgz, r-release (x86_64): rCISSVAE_0.0.4.tgz, r-oldrel (x86_64): rCISSVAE_0.0.4.tgz |
Please use the canonical form https://CRAN.R-project.org/package=rCISSVAE to link to this page.