textmodel Performance Comparisons

Kenneth Benoit

library("quanteda")
## Package version: 4.0.2
## Unicode version: 14.0
## ICU version: 71.1
## Parallel computing: disabled
## See https://quanteda.io for tutorials and examples.
library("quanteda.textmodels")

Naive Bayes

quanteda.textmodels implements fast methods for fitting and predicting Naive Bayes textmodels built especially for sparse document-feature matrices from textual data. It implements two models: multinomial and Bernoulli. (See Manning, Raghavan, and Schütze 2008, Chapter 13.)

Here, we compare performance for the two models, and then to the performance from two other packages for fitting these models.

For these tests, we will choose the dataset of 50,000 movie reviews from Maas et. al. (2011). We will use their partition into test and training sets for training and fitting our models.

# large movie review database of 50,000 movie reviews
load(url("https://quanteda.org/data/data_corpus_LMRD.rda"))

dfmat <- tokens(data_corpus_LMRD) %>%
  dfm()
dfmat_train <- dfm_subset(dfmat, set == "train")
dfmat_test <- dfm_subset(dfmat, set == "test")

Comparing the performance of fitting the model:

library("microbenchmark")
microbenchmark(
    multi = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
    bern = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
    times = 20
)
## Warning in microbenchmark(multi = textmodel_nb(dfmat_train,
## dfmat_train$polarity, : less accurate nanosecond times to avoid potential
## integer overflows
## Unit: milliseconds
##   expr      min       lq     mean   median       uq       max neval
##  multi 49.48130 50.54550 54.93710 51.95885 59.16956  63.90268    20
##   bern 58.41959 65.19896 70.26184 67.28961 69.71076 143.31849    20

And for prediction:

microbenchmark(
    multi = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
                    newdata = dfmat_test),
    bern = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
                   newdata = dfmat_test),
    times = 20
)
## Unit: milliseconds
##   expr      min       lq     mean   median       uq      max neval
##  multi 58.33902 59.19088 66.51920 61.94024 66.63349 140.4699    20
##   bern 87.05956 90.54387 98.62696 94.28239 99.40032 171.8418    20

Now let’s see how textmodel_nb() compares to equivalent functions from other packages. Multinomial:

library("fastNaiveBayes")
library("naivebayes")
## naivebayes 1.0.0 loaded
## For more information please visit:
## https://majkamichal.github.io/naivebayes/

microbenchmark(
    textmodels = {
      tmod <-  textmodel_nb(dfmat_train, dfmat_train$polarity, smooth = 1, distribution = "multinomial")
      pred <- predict(tmod, newdata = dfmat_test)
    },
    fastNaiveBayes = { 
      tmod <- fnb.multinomial(as(dfmat_train, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
      pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
    },
    naivebayes = {
      tmod = multinomial_naive_bayes(as(dfmat_train, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
      pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
    },
    times = 20
)
## Unit: milliseconds
##            expr      min       lq      mean   median        uq      max neval
##      textmodels 58.07256 59.90389  63.10393 60.90741  68.72619  71.4803    20
##  fastNaiveBayes 85.73686 96.66390 102.83612 98.28379 102.08590 178.6441    20
##      naivebayes 69.26483 70.51531  80.99976 75.15234  78.64688 200.7904    20

And Bernoulli. Note here that while we are supplying the Boolean matrix to textmodel_nb(), this re-weighting from the count matrix would have been performed automatically within the function had we not done so in advance - it’s done here just for comparison.

dfmat_train_bern <- dfm_weight(dfmat_train, scheme = "boolean")
dfmat_test_bern <- dfm_weight(dfmat_test, scheme = "boolean")

microbenchmark(
    textmodel_nb = {
      tmod <-  textmodel_nb(dfmat_train_bern, dfmat_train$polarity, smooth = 1, distribution = "Bernoulli")
      pred <- predict(tmod, newdata = dfmat_test)
    },
    fastNaiveBayes = { 
      tmod <- fnb.bernoulli(as(dfmat_train_bern, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
      pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
    },
    naivebayes = {
      tmod = bernoulli_naive_bayes(as(dfmat_train_bern, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
      pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
    },
    times = 20
)
## Unit: milliseconds
##            expr      min        lq      mean    median       uq      max neval
##    textmodel_nb 84.44725  91.09681  94.37883  93.52768  96.1443 109.0465    20
##  fastNaiveBayes 95.57600 103.41438 113.60162 104.92816 107.9759 194.7781    20
##      naivebayes 74.78490  76.45424  86.57822  82.58224  85.9739 182.0318    20

References

Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts (2011). “Learning Word Vectors for Sentiment Analysis”. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).

Majka M (2020). naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R. R package version 0.9.7, <URL: https://CRAN.R-project.org/package=naivebayes>. Date: 2020-03-08.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information Retrieval. Cambridge University Press.

Skogholt, Martin (2020). fastNaiveBayes: Extremely Fast Implementation of a Naive Bayes Classifier. R package version 2.2.1. https://github.com/mskogholt/fastNaiveBayes. Date: 2020-05-04.