
Package ‘otpr’
October 14, 2022

Title An R Wrapper for the 'OpenTripPlanner' REST API

Version 0.5.1

Description A wrapper for the 'OpenTripPlanner' <http://www.opentripplanner.org/>
REST API. Queries are submitted to the relevant 'OpenTripPlanner' API resource, the response
is parsed and useful R objects are returned.

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

Imports checkmate, httr, geojsonsf, janitor, jsonlite, sf, urltools,
dplyr, rrapply, rlang

RoxygenNote 7.1.2

Suggests testthat, covr

NeedsCompilation no

Author Marcus Young [aut, cre] (<https://orcid.org/0000-0003-4627-1116>)

Maintainer Marcus Young <M.A.Young@soton.ac.uk>

Repository CRAN

Date/Publication 2022-01-07 13:22:45 UTC

R topics documented:

otp_connect . 2
otp_create_surface . 3
otp_evaluate_surface . 5
otp_get_distance . 7
otp_get_isochrone . 8
otp_get_times . 10

Index 13

1

http://www.opentripplanner.org/
https://orcid.org/0000-0003-4627-1116

2 otp_connect

otp_connect Set up and confirm a connection to an OTP instance.

Description

Defines the parameters required to connect to a router on an OTP instance and, if required, confirms
that the instance and router are queryable.

Usage

otp_connect(
hostname = "localhost",
router = "default",
port = 8080,
tz = Sys.timezone(),
ssl = FALSE,
check = TRUE

)

Arguments

hostname A string, e.g. "ec2-34-217-73-26.us-west-2.compute.amazonaws.com". Op-
tional, default is "localhost".

router A string, e.g. "UK2018". Optional, default is "default". Do not specify for
OTPv2 which does not support named routers.

port A positive integer. Optional, default is 8080.

tz A string, containing the time zone of the router’s graph. Optional. This should
be a valid time zone (checked against vector returned by ‘OlsonNames()‘). For
example: "Europe/Berlin". Default is the timezone of the current system (ob-
tained from Sys.timezone()). Using the default will be ok if the current system
time zone is the same as the time zone of the OTP graph.

ssl Logical, indicates whether to use https. Optional, default is FALSE.

check Deprecated and has no effect.

Value

Returns S3 object of class otpconnect if reachable.

Examples

Not run:
otpcon <- otpr_connect()
otpcon <- otpr_connect(router = "UK2018",

ssl = TRUE)
otpcon <- otpr_connect(hostname = "ec2.us-west-2.compute.amazonaws.com",

router = "UK2018",

otp_create_surface 3

port = 8888,
ssl = TRUE)

End(Not run)

otp_create_surface Creates a travel time surface (OTPv1 only).

Description

Creates a travel time surface for an origin point. A surface contains the travel time to every geo-
graphic coordinate that can be reached from that origin (up to a hard coded limit in OTP of 120
minutes). Optionally, the surface can be saved as a raster file (GeoTIFF) to a designated directory.

Usage

otp_create_surface(
otpcon,
getRaster = FALSE,
rasterPath = tempdir(),
fromPlace,
mode = "TRANSIT",
date = format(Sys.Date(), "%m-%d-%Y"),
time = format(Sys.time(), "%H:%M:%S"),
maxWalkDistance = NULL,
walkReluctance = 2,
waitReluctance = 1,
transferPenalty = 0,
minTransferTime = 0,
batch = TRUE,
arriveBy = TRUE,
extra.params = list()

)

Arguments

otpcon An OTP connection object produced by otp_connect.

getRaster Logical. Whether or not to download a raster (geoTIFF) of the generated sur-
face. Default FALSE.

rasterPath Character. Path of a directory where the the surface raster should be saved if
getRaster is TRUE. Default is tempdir(). Use forward slashes on Windows.
The file will be named surface_id.tiff, with id replaced by the OTP id assigned
to the surface.

fromPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘. This is
the origin of the surface to be created.

4 otp_create_surface

mode Character vector, mode(s) of travel. Valid values are: WALK, BICYCLE, CAR,
TRANSIT, BUS, RAIL, TRAM, SUBWAY OR ’c("TRANSIT", "BICYCLE")’.
TRANSIT will use all available transit modes. Default is CAR. WALK mode is
automatically added for TRANSIT, BUS, RAIL, TRAM, and SUBWAY.

date Character, must be in the format mm-dd-yyyy. This is the desired date of travel.
Only relevant for transit modes. Default is the current system date.

time Character, must be in the format hh:mm:ss. If arriveBy is FALSE (the de-
fault) this is the desired departure time, otherwise the desired arrival time. Only
relevant for transit modes. Default is the current system time.

maxWalkDistance

Numeric. The maximum distance (in meters) that the user is willing to walk.
Default is NULL (the parameter is not passed to the API and the OTP default
of unlimited takes effect). This is a soft limit in OTPv1 and is ignored if the
mode is WALK only. In OTPv2 this parameter imposes a hard limit on WALK,
CAR and BICYCLE modes (see: http://docs.opentripplanner.org/en/
latest/OTP2-MigrationGuide/#router-config).

walkReluctance A single numeric value. A multiplier for how bad walking is compared to being
in transit for equal lengths of time. Default = 2.

waitReluctance A single numeric value. A multiplier for how bad waiting for a transit vehicle
is compared to being on a transit vehicle. This should be greater than 1 and less
than walkReluctance (see API docs). Default = 1.

transferPenalty

Integer. An additional penalty added to boardings after the first. The value is in
OTP’s internal weight units, which are roughly equivalent to seconds. Set this
to a high value to discourage transfers. Default is 0.

minTransferTime

Integer. The minimum time, in seconds, between successive trips on different
vehicles. This is designed to allow for imperfect schedule adherence. This is a
minimum; transfers over longer distances might use a longer time. Default is 0.

batch Logical. Set to TRUE by default. This is required to tell OTP to allow a query
without the toPlace parameter. This is necessary as we want to build paths to
all destinations from one origin.

arriveBy Logical. Whether a trip should depart (FALSE) or arrive (TRUE) at the specified
date and time. Default is FALSE.

extra.params A list of any other parameters accepted by the OTP API SurfaceResource entry
point. For advanced users. Be aware that otpr will carry out no validation of
these additional parameters. They will be passed directly to the API.

Details

There are a few things to note regarding the raster image that OTP creates:

• The travel time cutoff for a surface is hard-coded within OTP at 120 minutes. Every grid cell
within the extent of the graph that is 120 minutes travel time or beyond, or not accessible, is
given the value of 120.

• Any grid cell outside of the extent of the network (i.e. unreachable) is given the value 128.

http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config
http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config

otp_evaluate_surface 5

• It is advisable to interpret the raster of a surface in conjunction with results from evaluating
the surface.

• OTP can take a while the first time a raster of a surface is generated after starting up. Subse-
quent rasters (even for different origins) are much faster to generate.

Value

Assuming no error, returns a list of 5 elements:

• errorId Will be "OK" if no error condition.

• surfaceId The id of the surface that was evaluated.

• surfaceRecord Details of the parameters used to create the surface.

• rasterDownload The path to the saved raster file (if getRaster was set to TRUE and a valid
path was provided via rasterPath.)

• query The URL that was submitted to the OTP API.

If there is an error, a list containing 3 elements is returned:

• errorId The id code of the error.

• errorMessage The error message.

• query The URL that was submitted to the OTP API.

Examples

Not run:
otp_create_surface(otpcon, fromPlace = c(53.43329,-2.13357), mode = "TRANSIT",
maxWalkDistance = 1600, getRaster = TRUE)

otp_create_surface(otpcon, fromPlace = c(53.43329,-2.13357), date = "03-26-2019",
time = "08:00:00", mode = "BUS", maxWalkDistance = 1600, getRaster = TRUE,
rasterPath = "C:/temp")

End(Not run)

otp_evaluate_surface Evaluates an existing travel time surface (OTPv1 only).

Description

Evaluates an existing travel time surface. Using a pointset from a specified CSV file, the travel time
to each point is obtained from the specified surface. Accessibility indicators are then generated for
one or more ’opportunity’ columns in the pointset. For example, you might have the number of jobs
available at each location, or the number of hospital beds.

Usage

otp_evaluate_surface(otpcon, surfaceId, pointset, detail = FALSE)

6 otp_evaluate_surface

Arguments

otpcon An OTP connection object produced by otp_connect.

surfaceId Integer, the id number of an existing surface created using otp_create_surface().

pointset Character string, the name of a pointset known to OTP. A pointset is contained
in a CSV file present in the pointset directory location passed to OTP at startup.
The name of the pointset is the name of the file (without extension).

detail logical, whether the travel time from the surface origin to each location in the
pointset should be returned. Default is FALSE.

Details

This function requires OTP to have been started with the --analyst switch and the --pointset
parameter set to the path of a directory containing the pointset file(s).

Value

Assuming no error, returns a list containing 4 or more elements:

• errorId Will be "OK" if no error condition.

• surfaceId The id of the surface that was evaluated.

• One or more dataframes for each of the ’opportunity’ columns in the pointset CSV file. Each
dataframe contains four columns:

– minutes. The time from the surface origin in one-minute increments.
– counts. The number of the opportunity locations reached within each minute interval.
– sum. The sum of the opportunities at each of the locations reached within each minute

interval.
– cumsums. A cumulative sum of the opportunities reached.

• If detail was set to TRUE then an additional dataframe containing the time taken (in seconds)
to reach each point in the pointset CSV file. If a point was not reachable the time will be
recorded as NA.

• query The URL that was submitted to the OTP API.

If there is an error, a list containing 3 elements is returned:

• errorId The id code of the error.

• errorMessage The error message.

• query The URL that was submitted to the OTP API.

Examples

Not run:
otp_evaluate_surface(otpcon, surfaceId = 0, pointset = "jobs", detail = TRUE)

End(Not run)

otp_get_distance 7

otp_get_distance Finds the distance in metres between supplied origin and destination

Description

Finds the distance in metres between supplied origin and destination. Only makes sense for walk,
cycle or car modes (not transit)

Usage

otp_get_distance(otpcon, fromPlace, toPlace, mode = "CAR")

Arguments

otpcon An OTP connection object produced by otp_connect.

fromPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

toPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.36484, -2.27108)‘

mode Character vector, single mode of travel. Valid values are WALK, BICYCLE, or
CAR. Default is CAR.

Value

If OTP has not returned an error then a list containing errorId with the value "OK", and the
distance in metres. If OTP has returned an error then a list containing errorId with the OTP
error code and errorMessage with the error message returned by OTP. In both cases there will be
a third element named query which is a character string containing the URL that was submitted to
the OTP API.

Examples

Not run:
otp_get_distance(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108))

otp_get_distance(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "WALK")

End(Not run)

8 otp_get_isochrone

otp_get_isochrone Returns one or more travel time isochrones (OTPv1 only)

Description

Returns one or more travel time isochrones in either GeoJSON format or as an sf object. Only
works correctly for walk and/or transit modes - a limitation of OTP. Isochrones can be generated
either from a location or to a location.

Usage

otp_get_isochrone(
otpcon,
location,
fromLocation = TRUE,
format = "JSON",
mode = "TRANSIT",
date = format(Sys.Date(), "%m-%d-%Y"),
time = format(Sys.time(), "%H:%M:%S"),
cutoffs,
batch = TRUE,
arriveBy = FALSE,
maxWalkDistance = NULL,
walkReluctance = 2,
waitReluctance = 1,
transferPenalty = 0,
minTransferTime = 0,
extra.params = list()

)

Arguments

otpcon An OTP connection object produced by otp_connect.

location Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

fromLocation Logical. If TRUE (default) the isochrone will be generated from the location.
If FALSE the isochrone will be generated to the location.

format Character, required format of returned isochrone(s). Either JSON (returns Geo-
JSON) or SF (returns simple feature collection). Default is JSON.

mode Character vector, mode(s) of travel. Valid values are: WALK, TRANSIT, BUS,
RAIL, TRAM, SUBWAY. TRANSIT will use all available transit modes. De-
fault is TRANSIT. WALK mode is automatically added to TRANSIT, BUS,
RAIL, TRAM, and SUBWAY. Due to an OTP limitation this function is not
suitable for CAR or BICYCLE modes.

date Character, must be in the format mm-dd-yyyy. This is the desired date of travel.
Only relevant for transit modes. Default is the current system date.

otp_get_isochrone 9

time Character, must be in the format hh:mm:ss. If arriveBy is FALSE (the de-
fault) this is the desired departure time, otherwise the desired arrival time. Only
relevant for transit modes. Default is the current system time.

cutoffs Numeric vector, containing the cutoff times in seconds. for example: ’c(900,
1800, 2700)’ would request 15, 30 and 60 minute isochrones. Can be a single
value.

batch Logical. If true, goal direction is turned off and a full path tree is built

arriveBy Logical. Whether a trip should depart (FALSE) or arrive (TRUE) at the specified
date and time. Default is FALSE.

maxWalkDistance

Numeric. The maximum distance (in meters) that the user is willing to walk.
Default is NULL (the parameter is not passed to the API and the OTP default
of unlimited takes effect). This is a soft limit in OTPv1 and is ignored if the
mode is WALK only. In OTPv2 this parameter imposes a hard limit on WALK,
CAR and BICYCLE modes (see: http://docs.opentripplanner.org/en/
latest/OTP2-MigrationGuide/#router-config).

walkReluctance A single numeric value. A multiplier for how bad walking is compared to being
in transit for equal lengths of time. Default = 2.

waitReluctance A single numeric value. A multiplier for how bad waiting for a transit vehicle
is compared to being on a transit vehicle. This should be greater than 1 and less
than walkReluctance (see API docs). Default = 1.

transferPenalty

Integer. An additional penalty added to boardings after the first. The value is in
OTP’s internal weight units, which are roughly equivalent to seconds. Set this
to a high value to discourage transfers. Default is 0.

minTransferTime

Integer. The minimum time, in seconds, between successive trips on different
vehicles. This is designed to allow for imperfect schedule adherence. This is a
minimum; transfers over longer distances might use a longer time. Default is 0.

extra.params A list of any other parameters accepted by the OTP API LIsochrone entry point.
For advanced users. Be aware that otpr will carry out no validation of these
additional parameters. They will be passed directly to the API. Do not pass
’fromPlace’ or ’toPlace’ to this function. These parameters are handled inter-
nally based on the values of location and fromLocation.

Value

Returns a list. First element in the list is errorId. This is "OK" if OTP successfully returned the
isochrone(s), otherwise it is "ERROR". The second element of list varies:

• If errorId is "ERROR" then response contains the OTP error message.

• If errorId is "OK" then response contains the the isochrone(s) in either GeoJSON format or
as an sf object, depending on the value of the format argument.

The third element of the list is query which is a character string containing the URL that was
submitted to the OTP API.

http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config
http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config

10 otp_get_times

Examples

Not run:
otp_get_isochrone(otpcon, location = c(53.48805, -2.24258), cutoffs = c(900, 1800, 2700))

otp_get_isochrone(otpcon, location = c(53.48805, -2.24258), fromLocation = FALSE,
cutoffs = c(900, 1800, 2700), mode = "BUS")

End(Not run)

otp_get_times Queries OTP for the time or detailed itinerary for a trip between an
origin and destination

Description

In its simplest use case the function returns the time in minutes between an origin and destination by
the specified mode(s) for the top itinerary returned by OTP. If detail is set to TRUE one or more
detailed trip itineraries are returned, including the time by each mode (if a multimodal trip), waiting
time and the number of transfers. Optionally, the details of each journey leg for each itinerary can
also be returned.

Usage

otp_get_times(
otpcon,
fromPlace,
toPlace,
mode = "CAR",
date = format(Sys.Date(), "%m-%d-%Y"),
time = format(Sys.time(), "%H:%M:%S"),
maxWalkDistance = NULL,
walkReluctance = 2,
waitReluctance = 1,
arriveBy = FALSE,
transferPenalty = 0,
minTransferTime = 0,
maxItineraries = 1,
detail = FALSE,
includeLegs = FALSE,
extra.params = list()

)

Arguments

otpcon An OTP connection object produced by otp_connect.

fromPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

toPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.36484, -2.27108)‘

otp_get_times 11

mode Character vector, mode(s) of travel. Valid values are: WALK, BICYCLE, CAR,
TRANSIT, BUS, RAIL, TRAM, SUBWAY OR ’c("TRANSIT", "BICYCLE")’.
TRANSIT will use all available transit modes. Default is CAR. WALK mode is
automatically added for TRANSIT, BUS, RAIL, TRAM, and SUBWAY.

date Character, must be in the format mm-dd-yyyy. This is the desired date of travel.
Only relevant for transit modes. Default is the current system date.

time Character, must be in the format hh:mm:ss. If arriveBy is FALSE (the de-
fault) this is the desired departure time, otherwise the desired arrival time. Only
relevant for transit modes. Default is the current system time.

maxWalkDistance

Numeric. The maximum distance (in meters) that the user is willing to walk.
Default is NULL (the parameter is not passed to the API and the OTP default
of unlimited takes effect). This is a soft limit in OTPv1 and is ignored if the
mode is WALK only. In OTPv2 this parameter imposes a hard limit on WALK,
CAR and BICYCLE modes (see: http://docs.opentripplanner.org/en/
latest/OTP2-MigrationGuide/#router-config).

walkReluctance A single numeric value. A multiplier for how bad walking is compared to being
in transit for equal lengths of time. Default = 2.

waitReluctance A single numeric value. A multiplier for how bad waiting for a transit vehicle
is compared to being on a transit vehicle. This should be greater than 1 and less
than walkReluctance (see API docs). Default = 1.

arriveBy Logical. Whether a trip should depart (FALSE) or arrive (TRUE) at the specified
date and time. Default is FALSE.

transferPenalty

Integer. An additional penalty added to boardings after the first. The value is in
OTP’s internal weight units, which are roughly equivalent to seconds. Set this
to a high value to discourage transfers. Default is 0.

minTransferTime

Integer. The minimum time, in seconds, between successive trips on different
vehicles. This is designed to allow for imperfect schedule adherence. This is a
minimum; transfers over longer distances might use a longer time. Default is 0.

maxItineraries Integer. Controls the number of trip itineraries that are returned when detail is
set to TRUE. This is not an OTP parameter. All suggested itineraries are allowed
to be returned by the OTP server. The function will return them to the user in the
order they were provided by OTP up to the maximum specified by this param-
eter. Default is 1. This is an alternative to using the OTP maxNumItineraries
parameter which has problematic behaviour.

detail Logical. When set to FALSE a single trip time is returned. When set to TRUE
one or more detailed trip itineraries are returned (dependent on maxItineraries).
Default is FALSE.

includeLegs Logical. Determines whether or not details of each journey leg are returned.
If TRUE then a nested dataframe of journeys legs will be returned for each
itinerary if detail is also TRUE. Default is FALSE.

extra.params A list of any other parameters accepted by the OTP API PlannerResource entry
point. For advanced users. Be aware that otpr will carry out no validation of
these additional parameters. They will be passed directly to the API.

http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config
http://docs.opentripplanner.org/en/latest/OTP2-MigrationGuide/#router-config

12 otp_get_times

Details

If you plan to use the function in simple-mode - where just the duration of the top itinerary is
returned - it is advisable to first review several detailed itineraries to ensure that the parameters you
have set are producing sensible results.

If requested using includeLegs, the itineraries dataframe will contain a column called ’legs’ which
has a nested legs dataframe for each itinerary. Each legs dataframe will contain a set of core columns
that are consistent across all queries. However, as the OTP API does not consistently return the same
attributes for legs, there will be some variation in columns returned. You should bare this in mind
if your post processing uses these columns (e.g. by checking for column existence).

Value

Returns a list of three or four elements. The first element in the list is errorId. This is "OK" if OTP
has not returned an error. Otherwise it is the OTP error code. The second element of list varies:

• If OTP has returned an error then errorMessage contains the OTP error message.

• If there is no error and detail is FALSE then the duration in minutes is returned as an
integer. This is the duration of the top itinerary returned by the OTP server.

• If there is no error and detail is TRUE then itineraries as a dataframe.

The third element of the list is query. This is a character string containing the URL that was
submitted to the OTP API.

Examples

Not run:
otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108))

otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "BUS", date = "03-26-2019", time = "08:00:00")

otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "BUS", date = "03-26-2019", time = "08:00:00", detail = TRUE)

End(Not run)

Index

otp_connect, 2, 3, 6–8, 10
otp_create_surface, 3
otp_evaluate_surface, 5
otp_get_distance, 7
otp_get_isochrone, 8
otp_get_times, 10

13

	otp_connect
	otp_create_surface
	otp_evaluate_surface
	otp_get_distance
	otp_get_isochrone
	otp_get_times
	Index

