## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- ## Install extra packages (if needed) # install.packages("folio") library(nexus) ## ----------------------------------------------------------------------------- ## Data from Wood and Liu 2023 data("bronze", package = "folio") ## Use the third column (dynasties) for grouping coda <- as_composition(bronze, parts = 4:11, groups = 3) ## ----mean--------------------------------------------------------------------- ## Compositional mean by artefact coda <- condense(coda, by = list(bronze$dynasty, bronze$reference)) ## ----barplot, fig.width=7, fig.height=7, out.width='100%'--------------------- ## Select major elements major <- coda[, is_element_major(coda)] ## Compositional bar plot barplot(major, order_rows = "Cu", space = 0) ## ----pca, fig.width=7, fig.height=7, out.width='50%', fig.show='hold'--------- ## CLR clr <- transform_clr(coda, weights = TRUE) ## PCA lra <- pca(clr) ## Visualize results viz_individuals( x = lra, extra_quali = group_names(clr), color = c("#004488", "#DDAA33", "#BB5566"), hull = TRUE ) viz_variables(lra) ## ----manova------------------------------------------------------------------- ## ILR ilr <- transform_ilr(coda) ## MANOVA fit <- manova(ilr ~ group_names(ilr)) summary(fit) ## ----lda, fig.width=7, fig.height=7, out.width='100%'------------------------- ## LDA discr <- MASS::lda(ilr, grouping = group_names(ilr)) plot(discr) ## Back transform results transform_inverse(discr$means, origin = ilr)