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This vignette repeats and embellishes examples in help(F.cjs.estim).

Time-varying Models

The following demonstrates two methods for fitting a time-varying capture and survival model, the so-called
“small t” model. First, we attach the mra library and obtain access to the example dipper data.
library(mra)

## mra (version 2.16.11)

data("dipper.histories")
dim(dipper.histories)

## [1] 294 7

head(dipper.histories)

## h1 h2 h3 h4 h5 h6 h7
## 1 1 1 1 1 1 1 0
## 2 1 1 1 1 1 0 0
## 3 1 1 1 1 0 0 0
## 4 1 1 1 1 0 0 0
## 5 1 1 0 1 1 1 0
## 6 1 1 0 0 0 0 0

Method 1: Using factors

The following code constructs a factor variable containing one level for each capture occasion. The attribute
of this factor tells mra the “other”" dimension of the problem. Internally, mra will use this attribute to
replicate the factor into matrices that are the appropriate size.
ct <- as.factor( paste("T",1:ncol(dipper.histories), sep=""))
attr(ct,"nan")<-nrow(dipper.histories)
ct

## [1] T1 T2 T3 T4 T5 T6 T7
## attr(,"nan")
## [1] 294
## Levels: T1 T2 T3 T4 T5 T6 T7

Next, call F.cjs.estim and specify that ct is a time-varying vector covariate using the tvar function. When
the vector given to tvar is a factor, there are additional options which allow the user to drop certain levels of
the factor. This is useful when coefficients for some levels are not estimable, as in the case of a completely
time-varying CJS model. Here, there are 7 levels in factor ct, but only 6 capture and survival parameters are
defined (recall, 1st capture parameter is not estimable, and 7th survival parameter between occasions 7 and 8
does not exist). Consequently, we tell tvar to drop the first two levels of ct from the capture model. We
drop the level 1st because only 6 parameters exist. We drop the 2nd to break the colinearity of levels and
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define p2 as the reference level. In the survival model, we drop the first, sixth, and seventh levels of ct. The
first level is dropped to break the colinearity of levels and define φ1 as the reference level. We drop level
6 because the last survival and capture parameters are confounded in CJS models. We drop the 7th level
because there are only 6 survival parameters. The call the F.cjs.estim is:
dipper1.cjs <- F.cjs.estim( ~tvar(ct,drop=c(1,2)), ~tvar(ct,drop=c(1,6,7)), dipper.histories )
dipper1.cjs

## Call:
## F.cjs.estim(capture = ~tvar(ct, drop = c(1, 2)), survival = ~tvar(ct,
## drop = c(1, 6, 7)), histories = dipper.histories)
##
## Capture var Est SE Survival var Est SE
## (Intercept) 0.82928 0.78283 (Intercept) 0.93546 0.76772
## tvar(ct, drop = c(1, 2)):T3 1.65563 1.29086 tvar(ct, drop = c(1, 6, 7)):T2 -1.19828 0.8698
## tvar(ct, drop = c(1, 2)):T4 1.5221 1.07234 tvar(ct, drop = c(1, 6, 7)):T3 -1.02284 0.80412
## tvar(ct, drop = c(1, 2)):T5 1.37675 0.98779 tvar(ct, drop = c(1, 6, 7)):T4 -0.41986 0.80834
## tvar(ct, drop = c(1, 2)):T6 1.79509 1.06789 tvar(ct, drop = c(1, 6, 7)):T5 -0.5361 0.80229
## tvar(ct, drop = c(1, 2)):T7 0.2106 0.83736
##
## Message = SUCCESS: Convergence criterion met
## Link = logit
## Model df = 11
## Std Errors and QAIC adjusted for C_hat = 1 on 5 df
## Log likelihood = -328.475105968236
## Deviance = 656.950211936473
## AIC = 678.950211936473
## AICc = 679.886382149239
## QAIC = 678.950211936473
## QAICc = 679.886382149239
##
## Population Size Estimates (se):
## N2=86 (21.39), N3=84 (7.18), N4=88 (6.29), N5=98 (6.7), N6=105 (5.85), N7=126 (30.49),

Method 2: Using explicit 2-D matricies

While using factors (Method 1 above) produces the most economical code, it does not adequately illuminate
the covariate matrices which are at the heart of CJS modeling. To illustrate covariates as explicit matricies,
this method constructs one 2-D matrix for each paramter, then estimates the same model as Method 1.

First, we construct 6 matricies containing 1’s in a single column only. In Method 1, this construction
was performed behind-the-scenes by tvar. Note that only 6 matricies are required due to the number of
parameters, breaking of colinearity, and confounding of CJS paramters mentioned above.
x2 <- matrix(c(0,1,0,0,0,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x3 <- matrix(c(0,0,1,0,0,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x4 <- matrix(c(0,0,0,1,0,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x5 <- matrix(c(0,0,0,0,1,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x6 <- matrix(c(0,0,0,0,0,1,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x7 <- matrix(c(0,0,0,0,0,0,1), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)

Each of the above matrices have a column of 1’s corresponding to the effect they estimate. The first six rows
of x3 and x4 are:
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head(x3)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0 0 1 0 0 0 0
## [2,] 0 0 1 0 0 0 0
## [3,] 0 0 1 0 0 0 0
## [4,] 0 0 1 0 0 0 0
## [5,] 0 0 1 0 0 0 0
## [6,] 0 0 1 0 0 0 0

head(x4)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0 0 0 1 0 0 0
## [2,] 0 0 0 1 0 0 0
## [3,] 0 0 0 1 0 0 0
## [4,] 0 0 0 1 0 0 0
## [5,] 0 0 0 1 0 0 0
## [6,] 0 0 0 1 0 0 0

We now call F.cjs.extim without aid of tvar by explicitely specifying the matricies in each model. Note
that x2 is not included in the capture model, and that x6 and x7 are not included in the survival model.
dipper2.cjs <- F.cjs.estim( ~x3+x4+x5+x6+x7, ~x2+x3+x4+x5, dipper.histories )
dipper2.cjs

## Call:
## F.cjs.estim(capture = ~x3 + x4 + x5 + x6 + x7, survival = ~x2 +
## x3 + x4 + x5, histories = dipper.histories)
##
## Capture var Est SE Survival var Est SE
## (Intercept) 0.82928 0.78283 (Intercept) 0.93546 0.76772
## x3 1.65563 1.29086 x2 -1.19828 0.8698
## x4 1.5221 1.07234 x3 -1.02284 0.80412
## x5 1.37675 0.98779 x4 -0.41986 0.80834
## x6 1.79509 1.06789 x5 -0.5361 0.80229
## x7 0.2106 0.83736
##
## Message = SUCCESS: Convergence criterion met
## Link = logit
## Model df = 11
## Std Errors and QAIC adjusted for C_hat = 1 on 5 df
## Log likelihood = -328.475105968236
## Deviance = 656.950211936473
## AIC = 678.950211936473
## AICc = 679.886382149239
## QAIC = 678.950211936473
## QAICc = 679.886382149239
##
## Population Size Estimates (se):
## N2=86 (21.39), N3=84 (7.18), N4=88 (6.29), N5=98 (6.7), N6=105 (5.85), N7=126 (30.49),

Note that parameter estimates produced by Method 1 and Method 2 are identical.
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Plot: N̂j estimates

Following is a plot of the Horvitz-Thomson population size estimates.
plot(dipper1.cjs)
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Plot: φ̂j estimates

Following is a plot of survival estimates containing one line per individual.
plot(dipper1.cjs,type="s",ci=FALSE)
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