Builds and interprets multi-response machine learning models using 'tidymodels' syntax. Users can supply a tidy model, and 'mrIML' automates the process of fitting multiple response models to multivariate data and applying interpretable machine learning techniques across them. For more details see Fountain-Jones (2021) <doi:10.1111/1755-0998.13495> and Fountain-Jones et al. (2024) <doi:10.22541/au.172676147.77148600/v1>.
| Version: | 
2.1.0 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
dplyr, magrittr, rlang, ggplot2, patchwork, purrr, recipes, rsample, tibble, tidyr, tidyselect, tune, workflows, yardstick, flashlight, future.apply, MetricsWeighted, finetune, hstats | 
| Suggests: | 
knitr, rmarkdown, testthat (≥ 3.0.0), ape, vegan, hardhat, ggrepel, themis, MRFcov, lme4, randomForest, ggnetwork, igraph, tidymodels, tidyverse, parsnip, gridExtra, future, generics, missForest, kernelshap, shapviz | 
| Published: | 
2025-07-28 | 
| DOI: | 
10.32614/CRAN.package.mrIML | 
| Author: | 
Nick Fountain-Jones
      [aut, cre,
    cph],
  Ryan Leadbetter  
    [aut],
  Gustavo Machado  
    [aut],
  Chris Kozakiewicz [aut],
  Nick Clark [aut] | 
| Maintainer: | 
Nick Fountain-Jones  <nick.fountainjones at utas.edu.au> | 
| BugReports: | 
https://github.com/nickfountainjones/mrIML/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/nickfountainjones/mrIML | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
mrIML results |