## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", error = TRUE ) ## ----setup, message=FALSE----------------------------------------------------- library(morrowplots) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- head(morrowplots) ## ----subset------------------------------------------------------------------- ## name the new dataset mp3 for plot 3 mp3 <- ## filter to only include rows where 'plot_num' is 3 and 'yield_bush' is not 'NA' dplyr::filter(morrowplots, plot_num == 3, !is.na(yield_bush)) %>% ## condense the filtered data and group it first by 'year' and then by 'treated' dplyr::group_by(year, treated) %>% ## calculate the average 'yield_bush' for each grouping ## and put that average in a new field called 'mp_ave' dplyr::summarise(mp_ave = mean(yield_bush)) head(mp3) ## ----mp3 line, fig.width=7---------------------------------------------------- ggplot2::ggplot(data = mp3) + ggplot2::geom_line(ggplot2::aes(x= year, y = mp_ave, color = treated)) ## ----mp3 smooth, fig.width=7-------------------------------------------------- ggplot2::ggplot(data = mp3) + ggplot2::geom_smooth(ggplot2::aes(x= year, y = mp_ave, color = treated)) ## ----get NASS data from github------------------------------------------------ ## If you chose Option 1: Download NASS data yourself, replace the URL with your file name, and path if necessary NASS <- read.csv("https://github.com/SandiCal/morrowplots/raw/main/vignettes/NASS_data.csv") ## ----add NASS----------------------------------------------------------------- ## remove everything from NASS except 'Year' and 'Value' NASS <- dplyr::select(NASS, year = Year, nat_ave = Value) ## join mp3 and NASS data by 'year' mp3_NASS <- mp3 %>% dplyr::left_join(NASS, by = "year") head(mp3_NASS) ## ----plot both, fig.width=7--------------------------------------------------- ggplot2::ggplot(data = mp3_NASS) + ## mp_ave color coded by 'treated' ggplot2::geom_smooth(ggplot2::aes(x= year, y = mp_ave, color = treated))+ ## add nat_ave as a dashed black line in the same graph ggplot2::geom_smooth(ggplot2::aes(x= year, y = nat_ave), linetype = "dashed", color = "black")+ ## add title and subtitle ggplot2::labs(title = "Morrow Plots Continuous Corn Yield Trends in Bushels per Acre", subtitle = "Compared to the U.S. national average (dashed line)" )+ ## add one of the built-in themes ggplot2::theme_light()