## ----pphpc1, eval = FALSE----------------------------------------------------- # # Load library # library(micompr) # # # Output names # outputs <- c("$P^s$", "$P^w$", "$P^c$", "$\\mean{E}^s$", # "$\\overline{E}^w$", "$\\overline{C}$", # "$\\widetilde{A}$") # # # Outputs from the NetLogo implementation # dir_nl_ok <- paste0(dir_data, "nl_ok") # # Outputs from the Java implementation, first configuration # dir_jex_ok <- paste0(dir_data, "j_ex_ok") # # Outputs from the Java implementation, second configuration # dir_jex_noshuff <- paste0(dir_data, "j_ex_noshuff") # # Outputs from the Java implementation, third configuration # dir_jex_diff <- paste0(dir_data, "j_ex_diff") # # # Files for model size 400, parameter set 1 # filez <- glob2rx("stats400v1*.txt") # # # Perform the three comparison cases # mic <- micomp(outputs, # ve_npcs = 0.75, # list(list(name = "I", # folders = c(dir_nl_ok, dir_jex_ok), # files = c(filez, filez), # lvls = c("NLOK", "JEXOK")), # list(name = "II", # folders = c(dir_nl_ok, dir_jex_noshuff), # files = c(filez, filez), # lvls = c("NLOK", "JEXNS")), # list(name = "III", # folders = c(dir_nl_ok, dir_jex_diff), # files = c(filez, filez), # lvls = c("NLOK","JEXDIF"))), # concat = T) ## ----pphpc2, eval = FALSE----------------------------------------------------- # toLatex(mic, # booktabs = T, # data_show = c("npcs-1", "mnvp-1", "parp-1", "scoreplot"), # data_labels = c("$\\#$PCs", "MNV", "$t$-test", "PCS"), # col_width = T, # pvalf_params = list(minval = 1e-8, na_str = "*"), # label = "tab:pphpc", # caption = paste("Comparison of a NetLogo implementation of", # "the PPHPC model against three configurations", # "of a parallel Java implementation.")) ## ----sunspot1, results = 'hide', warning = FALSE------------------------------ # Load library library(micompr) # Months in the 1749-1859 interval (110 years) # Months in the 1902-2012 interval (110 years) m <- sunspot.month[c(1:1320, 1837:3156)] m <- matrix(m, nrow = 20) # Factor vector, two levels: # a) ten 11-year cycles from 1749 to 1859 # b) ten 11-year cycles from 1902 to 2012 groups <- factor(c(rep("A", 10), rep("B", 10))) # Compare the two groups, use 9 PCs for MANOVA cmp <- cmpoutput("SunSpots", 9, m, groups) ## ----sunspot2, results = 'markup', warning = FALSE---------------------------- cmp ## ----sunspot3, results = 'markup', warning = FALSE---------------------------- assumptions(cmp) ## ----sunspot4, fig.show = 'asis', fig.env = 'figure', fig.cap = 'Plots produced by sunspots example.'---- plot(cmp) ## ----derma1, eval = FALSE----------------------------------------------------- # # Load libraries # library(bmp) # library(micompr) # # # Image definitions # imgs <- dir(imgfolder) # nimgs <- length(imgs) # npixels <- 760 * 570 # # # Specify image groups (Common nevi, atypical nevi, # # melanomas). # f <- read.table(grpsfile, row.names = 1) # grps <- f[order(row.names(f)), ] # # # Read images from disk # # Use different color channels as outputs, and also # # use a concatenated output # rimgs <- matrix(nrow = nimgs, ncol = npixels) # gimgs <- matrix(nrow = nimgs, ncol = npixels) # bimgs <- matrix(nrow = nimgs, ncol = npixels) # rgbimgs <- matrix(nrow = nimgs, ncol = npixels * 3) # # for (i in 1:nimgs) { # # cimg <- read.bmp(paste0(imgfolder, imgs[i])) # rimgs[i, ] <- c(cimg[ , , 1]) # gimgs[i, ] <- c(cimg[ , , 2]) # bimgs[i, ] <- c(cimg[ , , 3]) # rgbimgs[i, ] <- c(cimg[ , , 1], cimg[ , , 2], cimg[ , , 3]) # # } # # # Perform multivariate independent comparison of images # mic <- # micomp(outputs = c("R", "G", "B", "RGB"), # ve_npcs = 0.9, # comps = list( # list(name = "1v2", # grpout = list( # data = list(R = rimgs[grps != 3, ], # G = gimgs[grps != 3, ], # B = bimgs[grps != 3, ], # RGB = rgbimgs[grps != 3, ]), # obs_lvls = factor(grps[grps != 3]))), # list(name = "1v3", # grpout = list( # data = list(R = rimgs[grps != 2, ], # G = gimgs[grps != 2, ], # B = bimgs[grps != 2, ], # RGB = rgbimgs[grps != 2, ]), # obs_lvls = factor(grps[grps != 2]))), # list(name = "2v3", # grpout = list( # data = list(R = rimgs[grps != 1, ], # G = gimgs[grps != 1, ], # B = bimgs[grps != 1, ], # RGB = rgbimgs[grps != 1, ]), # obs_lvls = factor(grps[grps != 1]))))) ## ----derma2, eval = FALSE----------------------------------------------------- # toLatex(mic, # booktabs = T, # data_show = c("parp-1", "nparp-1", "scoreplot"), # data_labels = c("$t$-test", "$U$ test", "PCS"), # pvalf_params = list(minval = 1e-8, na_str = "*"), # label = "tab:ph2", # caption = paste("Comparison of PH$^2$ dataset images", # "grouped by lesion type."))