## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(metasnf) data_list <- generate_data_list( list(subc_v, "subcortical_volume", "neuroimaging", "continuous"), list(income, "household_income", "demographics", "continuous"), list(pubertal, "pubertal_status", "demographics", "continuous"), list(anxiety, "anxiety", "behaviour", "ordinal"), list(depress, "depressed", "behaviour", "ordinal"), uid = "unique_id" ) set.seed(42) settings_matrix <- generate_settings_matrix( data_list, nrow = 20, min_k = 20, max_k = 50 ) # Generation of 20 cluster solutions solutions_matrix <- batch_snf(data_list, settings_matrix) # Let's just calculate NMIs of the anxiety and depression data types for the # first 5 cluster solutions to save time: feature_nmis <- batch_nmi(data_list[4:5], solutions_matrix[1:5, ]) print(feature_nmis)