| Type: | Package | 
| Title: | Improved Score Tests for Generalized Linear Models | 
| Version: | 0.1-3 | 
| Date: | 2017-02-16 | 
| Depends: | R (≥ 3.3.2), MASS, stats | 
| Suggests: | Sleuth3 | 
| Author: | Antonio Hermes M. da Silva-Junior [aut, cre], Damiao N. da Silva [aut], Silvia L. P. Ferrari [ctb] | 
| Maintainer: | Antonio Hermes M. da Silva-Junior <hermes@ccet.ufrn.br> | 
| Description: | A set of functions to obtain modified score test for generalized linear models. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| LazyLoad: | yes | 
| LazyData: | yes | 
| Packaged: | 2017-02-16 14:14:14 UTC; mlfd58 | 
| NeedsCompilation: | no | 
| Repository: | CRAN | 
| Date/Publication: | 2017-02-16 17:27:45 | 
Likelihood ratio test for generalized linear models
Description
Computes the likelihood ratio test for the coefficients of a generalized linear model.
Usage
lr.test(fit1, fit2)
Arguments
fit1 | 
 an object that stores the results of   | 
fit2 | 
 an object that stores the results of   | 
Details
The objects fit1 and fit2 are obtained using the usual options passed to the glm function.
Value
The function lrt.test() returns the following list of values:
LR | 
 the value of the likelihood ratio statistic.  | 
pvalue | 
 the p value of test under null hypothesis chi-square distribution.  | 
Note
Both fit1 and fit2 must have the same family and link function.
Author(s)
Damiao N. da Silva damiao@ccet.ufrn.br
Antonio Hermes M. da Silva-Junior hermes@ccet.ufrn.br
References
McCullagh P, Nelder J (1989). Generalized Linear Models. Chapman & Hall/CRC, London.
Da Silva DN, Cordeiro GM (2009). "A Computer Program to Improve LR Tests for Generalized Linear Models." Communications in Statistics – Simulation and Computation, 38(10), 2184–2197.
See Also
Examples
data(strength)
fitf <- glm(y ~ cut * lot, data = strength,family = inverse.gaussian("inverse"))
fit0 <- glm(y ~ cut + lot, data = strength, family = inverse.gaussian("inverse"))
lr.test(fit0,fitf)
Modified score test for generalized linear models
Description
Computes the modified score test based for the coefficients of a generalized linear model.
Usage
mdscore(model = model, X1 = X1, phi = NULL)
Arguments
model | 
 an object that stores the results of   | 
X1 | 
 the matrix with the columns of the model matrix X that correspond to the coefficients being specified in the null hypothesis.  | 
phi | 
 the precision parameter.  | 
Details
The object fit.model is obtained using the usual options passed to the glm function.
Value
The function mdscore() returns the following list of values:
Sr | 
 the value of the score statistic.  | 
Srcor | 
 the value of the modified score statistic.  | 
coef | 
 a vector with the coefficients A1 , A2 and A3.  | 
n | 
 the total sample size.  | 
df | 
 the number of degrees of freedom of the chi–squared approximations for the tests.  | 
phi | 
 the precision parameter used in the computations  | 
Author(s)
Antonio Hermes M. da Silva-Junior hermes@ccet.ufrn.br
Damiao N. da Silva damiao@ccet.ufrn.br
References
Cordeiro GM, Ferrari SLP (1991). A Modified Score Test Statistic Having chi-squared Distribution to Order n–1 . Biometrika, 78(3), 573–582.
Cordeiro GM, Ferrari SLP, Paula GA (1993). Improved Score Tests for Generalized Linear Models. Journal of the Royal Statistical Society B, 55(3), 661–674.
Cribari-Neto F, Ferrari SLP (1995). Second Order Asymptotics for Score Tests in Generalised Linear Models. Biometrika, 82(2), 426–432.
da Silva-Junior AHM, da Silva DN, Ferrari SLP (2014). mdscore: An R Package to Compute Improved Score Tests in Generalized Linear Models. Journal of Statistical Software, 61(2), 1-16., http://www.jstatsoft.org/v61/c02/
See Also
Examples
data(strength)
fitf <- glm(y ~ cut * lot, data = strength,family = inverse.gaussian("inverse"))
summary(fitf)
X <- model.matrix(fitf, data = strength)
fit0 <- glm(y ~ cut + lot, data = strength, family = inverse.gaussian("inverse"))
mdscore(fit0, X1=X[, 7:10])
Impact Strength an Insulating Material
Description
The dataset is a subsample of the 5 x 2 factorial experiment given by Ostle and Mensing (1963).
Usage
data(strength)
Format
A data frame with 30 observations on the following 3 variables.
cuttype of specimen cut.
lotlof of the material –
I,II,III,IVandV.yobservations of the impact strength.
Source
Ostle B, Mensing RW (1963). Statistics in Research: Basic Concepts and Techniques for Research Workers. Iowa State University.
Examples
data(strength)
fitf <- glm(y ~ cut * lot, data = strength,family = inverse.gaussian("inverse"))
summary(fitf)
X <- model.matrix(fitf, data = strength)
fit0 <- glm(y ~ cut + lot, data = strength, family = inverse.gaussian("inverse"))
test <- mdscore(fit0, X1=X[, 7:10])
summary(test)
Summary methods for mdscore objects
Description
summary methods for the mdscore objects
Usage
## S3 method for class 'mdscore'
summary(object, ...)
Arguments
object | 
 object resulting from a run of the   | 
... | 
 not currently used  | 
Author(s)
Damiao N. da Silva damiao@ccet.ufrn.br
References
da Silva-Junior AHM, da Silva DN, Ferrari SLP (2014). mdscore: An R Package to Compute Improved Score Tests in Generalized Linear Models. Journal of Statistical Software, 61(2), 1-16., http://www.jstatsoft.org/v61/c02/
See Also
Examples
library(Sleuth3)
d <- transform(case1102, TLrat = Brain/Liver, Ltime = log(Time),
               Lwrat = log((Weight + Loss)/Weight),
               Treat = factor(Treatment == "BD", 
               labels=c("NS", "BD"))
               )
fitf <- glm(TLrat ~ Ltime * Treat + Days + Sex + Lwrat
            + Tumor + Treat*Lwrat, data = d,
            family = Gamma("log")
            )
X <- model.matrix(fitf)
fit0 <- glm(TLrat ~ Ltime * Treat + Sex + Lwrat + Tumor + Days,
            data=d, family=Gamma("log"))
test <- mdscore(fit0, X1=X[,9], phi=NULL)
summary(test)
Wald test for generalized linear models
Description
Computes the Wald score test for the coefficients of a generalized linear model.
Usage
wald.test(model = model, terms)
Arguments
model | 
 an object that stores the results of   | 
terms | 
 number of coefficients to be tested under null hypothesis  | 
Details
The object model is obtained using the usual options passed to the glm function.
Value
The function wald.test() returns the following list of values:
W | 
 the value of the Wald statistic.  | 
pvalue | 
 the p value of test under null hypothesis chi-square distribution.  | 
Author(s)
Damiao N. da Silva damiao@ccet.ufrn.br
Antonio Hermes M. da Silva-Junior hermes@ccet.ufrn.br
References
McCullagh P, Nelder J (1989). Generalized Linear Models. Chapman & Hall/CRC, London.
See Also
Examples
data(strength)
fitf <- glm(y ~ cut * lot, data = strength,family = inverse.gaussian("inverse"))
wald.test(fitf,term=9)