lmls: Gaussian Location-Scale Regression
The Gaussian location-scale regression model is a multi-predictor
    model with explanatory variables for the mean (= location) and the standard
    deviation (= scale) of a response variable. This package implements maximum
    likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms
    from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x>
    and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric
    bootstrap algorithm, and diagnostic plots for the model class.
| Version: | 
0.1.1 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
generics (≥ 0.1.0) | 
| Suggests: | 
bookdown, coda, covr, ggplot2, knitr, mgcv, mvtnorm, numDeriv, patchwork, rmarkdown, testthat (≥ 3.0.0) | 
| Published: | 
2024-11-20 | 
| DOI: | 
10.32614/CRAN.package.lmls | 
| Author: | 
Hannes Riebl [aut, cre] | 
| Maintainer: | 
Hannes Riebl  <hriebl at posteo.de> | 
| BugReports: | 
https://github.com/hriebl/lmls/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://hriebl.github.io/lmls/, https://github.com/hriebl/lmls | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
lmls results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lmls
to link to this page.