---
title: "libr"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{libr}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
The **libr** package brings the concepts of data libraries, data
dictionaries, and data steps to R.
* A **data library** is an object used to define
and manage an entire directory of data files.
* A **data dictionary** is a data
frame full of information about a data library, data frame, or tibble.
* A **data step** is a mechanism to perform row-by-row processing of data.
These concepts have been available in SAS® software for decades.
But they have not been available in R ... until now!
The **libr** package also includes an enhanced equality operator to
make data comparisons more intuitive.
### Key Functions
The above concepts are implemented in the **libr** package with four key
functions. They are:
* `libname()`: Creates a data library
* `dictionary()`: Creates a data dictionary
* `datastep()`: Performs row-by-row processing of data
### How to Use
Let's look at some simple examples of each of the four functions above. These
examples will be using some sample data. The sample data is included
in the **libr** package, and also available for download
[here](https://github.com/dbosak01/libr/blob/master/inst/extdata/libr_data.zip).
#### The `libname()` Function
The **libr** `libname()` function is quite similar to the SAS® `libname`
statement. The first parameter is the name of the library. The
second parameter is a path to a directory the library will point to. The
third parameter is the engine with which to read and write the data.
```{r eval=FALSE, echo=TRUE}
library(libr)
# Get path to sample data
pkg <- system.file("extdata", package = "libr")
# Define data library
libname(sdtm, pkg, "csv")
```
The `libname()` function above will send two types of information to the console:
* The column specifications for each data file imported
* A summary print-out of the library
The summary print-out looks like this:
```
# library 'sdtm': 8 items
- attributes: csv not loaded
- path: C:/packages/libr/inst/extdata
- items:
Name Extension Rows Cols Size LastModified
1 AE csv 150 27 88.1 Kb 2020-09-18 14:30:23
2 DA csv 3587 18 527.8 Kb 2020-09-18 14:30:23
3 DM csv 87 24 45.1 Kb 2020-09-18 14:30:23
4 DS csv 174 9 33.7 Kb 2020-09-18 14:30:23
5 EX csv 84 11 26 Kb 2020-09-18 14:30:23
6 IE csv 2 14 13 Kb 2020-09-18 14:30:23
7 SV csv 685 10 69.9 Kb 2020-09-18 14:30:24
8 VS csv 3358 17 467 Kb 2020-09-18 14:30:24
```
The summary displays what type of library it is, where it is located,
and what data (if any) is already in the library directory. In this case,
there are eight 'csv' files available.
For each of the eight files, the `libname()` function also displayed
the column specifications used to import the data file. A column
specification looks like this:
```
$VS
-- Column specification ------------------------------------------
cols(
STUDYID = col_character(),
DOMAIN = col_character(),
USUBJID = col_character(),
VSSEQ = col_double(),
VSTESTCD = col_character(),
VSTEST = col_character(),
VSPOS = col_character(),
VSORRES = col_double(),
VSORRESU = col_character(),
VSSTRESC = col_double(),
VSSTRESN = col_double(),
VSSTRESU = col_character(),
VSBLFL = col_character(),
VISITNUM = col_double(),
VISIT = col_character(),
VSDTC = col_date(format = ""),
VSDY = col_double()
)
```
The column specification shows how the data was imported. Since 'csv'
files do not contain well-defined data type information on each of the columns,
the `libname()` function has to guess at the data types. The column
specification shows you what the guesses were. This is useful information.
You should review these column specifications to see if the `libname()` function
guessed correctly. If it did not guess correctly, you can control
the import data types by sending a `specs()` collection of `import_spec()`
objects to the `import_specs` parameter on the `libname()` function. See
the `specs()` documentation for an example and additional details.
#### Accessing Data
Observe that there is difference between the SAS® `libname` statement and the
**libr** `libname()` function. The difference is that after the
SAS® `libname` statement is called, the data is immediately available to
your code using two-level (\.\) syntax.
With the **libr** function, on the other hand, the data is immediately
available using list syntax on the library variable name. That means you can
get to your data using the dollar sign ($), like this:
```{r eval=FALSE, echo=TRUE}
# View a dataset
sdtm$DM
# # A tibble: 87 × 24
# STUDYID DOMAIN USUBJID SUBJID RFSTDTC RFENDTC RFXSTDTC RFXENDTC RFICDTC RFPENDTC
#
# 1 ABC DM ABC-01… 049 2006-11-07 NA NA NA 2006-10-25 NA
# 2 ABC DM ABC-01… 050 2006-11-02 NA NA NA 2006-10-25 NA
# 3 ABC DM ABC-01… 051 2006-11-02 NA NA NA 2006-10-25 NA
# 4 ABC DM ABC-01… 052 2006-11-06 NA NA NA 2006-10-31 NA
# 5 ABC DM ABC-01… 053 2006-11-08 NA NA NA 2006-11-01 NA
# 6 ABC DM ABC-01… 054 2006-11-16 NA NA NA 2006-11-07 NA
# 7 ABC DM ABC-01… 055 2006-12-06 NA NA NA 2006-10-31 NA
# 8 ABC DM ABC-01… 056 2006-11-28 NA NA NA 2006-11-21 NA
# 9 ABC DM ABC-01… 113 2006-12-05 NA NA NA 2006-11-28 NA
# 10 ABC DM ABC-01… 114 2006-12-14 NA NA NA 2006-12-01 NA
# # 77 more rows
# # 14 more variables: DTHDTC , DTHFL , SITEID , BRTHDTC , AGE ,
# # AGEU , SEX , RACE , ETHNIC , ARMCD , ARM , ACTARMCD ,
# # ACTARM , COUNTRY
# # Use `print(n = ...)` to see more rows
```
Using this syntax, your dataset can be passed into any R function. For example,
here we can subset the dataset for a particular subject:
```
# Subset the data
dat <- subset(sdtm$DM, SUBJID == '050')
# View results
dat
# # A tibble: 1 × 24
# STUDYID DOMAIN USUBJID SUBJID RFSTDTC RFENDTC RFXSTDTC RFXENDTC RFICDTC RFPENDTC
#
# 1 ABC DM ABC-01-… 050 2006-11-02 NA NA NA 2006-10-25 NA
# # 14 more variables: DTHDTC , DTHFL , SITEID , BRTHDTC , AGE ,
# # AGEU , SEX , RACE , ETHNIC , ARMCD , ARM , ACTARMCD ,
# # ACTARM , COUNTRY
```
The dollar sign syntax shown above is recommended for the most memory-efficient
programming. If you are writing production code to be run in batch, use
the dollar sign syntax.
#### The `lib_load()` Function
For convenience, the package also provides a way to get two-level dot syntax,
similar to SAS®.
To get the dot syntax, you first have to call the `lib_load()` function.
```{r eval=FALSE, echo=TRUE}
lib_load(sdtm)
# # library 'sdtm': 8 items
# - attributes: csv loaded
# - path: C:/packages/libr/inst/extdata
# - items:
# Name Extension Rows Cols Size LastModified
# 1 AE csv 150 27 88.1 Kb 2020-09-18 14:30:23
# 2 DA csv 3587 18 527.8 Kb 2020-09-18 14:30:23
# 3 DM csv 87 24 45.1 Kb 2020-09-18 14:30:23
# 4 DS csv 174 9 33.7 Kb 2020-09-18 14:30:23
# 5 EX csv 84 11 26 Kb 2020-09-18 14:30:23
# 6 IE csv 2 14 13 Kb 2020-09-18 14:30:23
# 7 SV csv 685 10 69.9 Kb 2020-09-18 14:30:24
# 8 VS csv 3358 17 467 Kb 2020-09-18 14:30:24
```
Notice on the console printout that the library is now "loaded". That means
the data has been loaded into the workspace, and is available using
two-level dot syntax. If you are working in **RStudio**, the environment
pane will now show all the datasets available in the library.
At this point, you can work with your data very much the same way
as you would in SAS®. You can pass these datasets into statistical functions,
or manipulate them with **dplyr** functions. Note that you can also
work with individual variables on the datasets using dollar sign ("$") syntax.
```{r eval=FALSE, echo=TRUE}
# Get total number of records
nrow(sdtm.DM)
# [1] 87
# Get frequency counts for each arm
table(sdtm.DM$ARM)
# ARM A ARM B ARM C ARM D SCREEN FAILURE
# 20 21 21 23 2
```
The datasets will be available in the workspace for the length of your session.
If you wish to unload them from the workspace, call the `lib_unload()`
function. See the `lib_load()` and `lib_unload()` documentation for
additional information on these functions.
To see more examples of the **libr** data management
functions, refer to the articles on [Basic Library Operations](libr-basics.html)
and [Library Management](libr-management.html).
#### The `dictionary()` Function
Once you have a library defined, you may want to examine
the column attributes for the datasets in that library.
Examining those column attributes can be accomplished with the `dictionary()`
function. The `dictionary()`
function returns a tibble of information about the data in the library.
Continuing from the example above, let's look at the dictionary for the
'sdtm' library created previously.
```{r eval=FALSE, echo=TRUE}
dictionary(sdtm)
# # A tibble: 130 x 10
# Name Column Class Label Description Format Width Justify Rows NAs
#
# 1 AE STUDYID character NA NA NA 3 NA 150 0
# 2 AE DOMAIN character NA NA NA 2 NA 150 0
# 3 AE USUBJID character NA NA NA 10 NA 150 0
# 4 AE AESEQ numeric NA NA NA NA NA 150 0
# 5 AE AETERM character NA NA NA 72 NA 150 0
# 6 AE AELLT logical NA NA NA NA NA 150 150
# 7 AE AELLTCD logical NA NA NA NA NA 150 150
# 8 AE AEDECOD character NA NA NA 43 NA 150 0
# 9 AE AEPTCD numeric NA NA NA NA NA 150 0
# 10 AE AEHLT character NA NA NA 63 NA 150 0
# # ... with 120 more rows
```
The resulting dictionary table shows the name of the dataset, the column name,
and some interesting attributes related to each column. As you can see,
the **libr** dictionary table is overall quite similar to a SAS® dictionary
table. See the `dictionary()` function documentation for more information.
### The `datastep()` Function
People with experience in SAS® software know that it is sometimes advantageous
to process row-by-row. In SAS®, row-by-row processing done with a
data step. The data step is one of the most fundamental operations
when working in SAS®.
The **libr** package offers a `datastep()` function that simulates this style
of row-by-row processing. The function includes several of the most basic
parameters available to the SAS® datastep: keep, drop, rename, retain, and by.
Here is a simple example, again using the data from the library already
defined above:
```{r eval=FALSE, echo=TRUE}
age_groups <- datastep(sdtm.DM,
keep = c("USUBJID", "AGE", "AGEG"), {
if (AGE >= 18 & AGE <= 29)
AGEG <- "18 to 29"
else if (AGE >= 30 & AGE <= 44)
AGEG <- "30 to 44"
else if (AGE >= 45 & AGE <= 59)
AGEG <- "45 to 59"
else
AGEG <- "60+"
})
age_groups
# # A tibble: 87 x 3
# USUBJID AGE AGEG
#
# 1 ABC-01-049 39 30 to 44
# 2 ABC-01-050 47 45 to 59
# 3 ABC-01-051 34 30 to 44
# 4 ABC-01-052 45 45 to 59
# 5 ABC-01-053 26 18 to 29
# 6 ABC-01-054 44 30 to 44
# 7 ABC-01-055 47 45 to 59
# 8 ABC-01-056 31 30 to 44
# 9 ABC-01-113 74 60+
# 10 ABC-01-114 72 60+
# # ... with 77 more rows
```
Notice that the `datastep()` function kept only those variables specified
on the `keep` parameter. The data step itself is passed within the
curly braces. You can put any number of conditional statements and assignments
inside the curly braces, just like a SAS® data step. Also like a
SAS® data step, you do not need to 'declare' new variables. Any name
not identified as an R function name is assumed to be a new variable,
and will be created automatically on the input data.
The datastep function also supports "first." and "last." functionality through
use of the `by` parameter. See additional examples on the `datastep()`
help page and in the data step [article](libr-datastep.html).
### Next Steps
For next steps, please review the examples provided in the vignette articles.
Those articles include:
* [Basic Library Operations](libr-basics.html)
* [Library Management](libr-management.html)
* [Data Step Operations](libr-datastep.html)
* [Complete Example 1](libr-example1.html)
* [Complete Example 2](libr-example2.html)