--- title: "Basic Library Operations" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Basic Library Operations} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The main motivation for developing the **libr** package is to create and use data libraries and data dictionaries. These concepts are useful when dealing with sets of related data files. The `libname()` function allows you to define a library for an entire directory of data files. The library can then be manipulated as a whole using the `lib_*` functions in the **libr** package. ### Basic Library Operations There are four main **libr** functions for creating and using a data library: * `libname()` * `lib_load()` * `lib_unload()` * `lib_write()` The `libname()` function creates a data library. The function has parameters for the library name and a directory to associate it with. If the directory has existing data files, those data files will be automatically loaded into the library. Once in the library, the data can be accessed using list syntax. You may create a data library for several different types of files: 'rds', 'Rdata', 'rda', 'csv', 'xlsx', 'xls', 'sas7bdat', 'xpt', and 'dbf'. The type of library is defined using the `engine` parameter on the `libname()` function. The default data engine is 'rds'. The data engines will attempt to identify the correct data type for each column of data. You may also control the data type of the columns using the `import_specs` parameter and the `specs()` and `import_spec()` functions. If you prefer to access the data via the workspace, call the `lib_load()` function on the library. This function will load the library data into the parent frame, where it can be accessed using a two-level (<library>.<dataset>) name. When you are done with the data, call the `lib_unload()` function to remove the data from the parent frame and put it back in the library list. To write any added or modified data to disk, call the `lib_write()` function. The `lib_write()` function will only write data that has changed since the last write. The following example will illustrate some basic functionality of the **libr** package regarding the creation of libnames and use of dictionaries. The example first places some sample data in a temp directory for illustration purposes. Then the example creates a libname from the temp directory, loads it into memory, adds data to it, and then unloads and writes everything to disk: ```{r eval=FALSE, echo=TRUE} library(libr) # Create temp directory tmp <- tempdir() # Save some data to temp directory # for illustration purposes saveRDS(trees, file.path(tmp, "trees.rds")) saveRDS(rock, file.path(tmp, "rocks.rds")) # Create library libname(dat, tmp) # library 'dat': 2 items # - attributes: not loaded # - path: C:\Users\User\AppData\Local\Temp\RtmpCSJ6Gc # - items: # Name Extension Rows Cols Size LastModified # 1 rocks rds 48 4 3.1 Kb 2020-11-05 23:25:34 # 2 trees rds 31 3 2.4 Kb 2020-11-05 23:25:34 # Examine data dictionary for library dictionary(dat) # A tibble: 7 x 9 # Name Column Class Label Description Format Width Rows NAs # # 1 rocks area integer NA NA NA NA 48 0 # 2 rocks peri numeric NA NA NA NA 48 0 # 3 rocks shape numeric NA NA NA NA 48 0 # 4 rocks perm numeric NA NA NA NA 48 0 # 5 trees Girth numeric NA NA NA NA 31 0 # 6 trees Height numeric NA NA NA NA 31 0 # 7 trees Volume numeric NA NA NA NA 31 0 # Load library lib_load(dat) # Examine workspace ls() # [1] "dat" "dat.rocks" "dat.trees" "tmp" # Use data from the library summary(dat.rocks) # area peri shape perm # Min. : 1016 Min. : 308.6 Min. :0.09033 Min. : 6.30 # 1st Qu.: 5305 1st Qu.:1414.9 1st Qu.:0.16226 1st Qu.: 76.45 # Median : 7487 Median :2536.2 Median :0.19886 Median : 130.50 # Mean : 7188 Mean :2682.2 Mean :0.21811 Mean : 415.45 # 3rd Qu.: 8870 3rd Qu.:3989.5 3rd Qu.:0.26267 3rd Qu.: 777.50 # Max. :12212 Max. :4864.2 Max. :0.46413 Max. :1300.00 # Add data to the library dat.trees_subset <- subset(dat.trees, Girth > 11) # Add more data to the library dat.cars <- mtcars # Unload the library from memory lib_unload(dat) # Examine workspace again ls() # [1] "dat" "tmp" # Write the library to disk lib_write(dat) # library 'dat': 4 items # - attributes: not loaded # - path: C:\Users\User\AppData\Local\Temp\RtmpCSJ6Gc # - items: # Name Extension Rows Cols Size LastModified # 1 rocks rds 48 4 3.1 Kb 2020-11-05 23:37:45 # 2 trees rds 31 3 2.4 Kb 2020-11-05 23:37:45 # 3 cars rds 32 11 7.3 Kb 2020-11-05 23:37:45 # 4 trees_subset rds 23 3 1.8 Kb 2020-11-05 23:37:45 # Clean up lib_delete(dat) # Examine workspace again ls() # [1] "tmp" ``` Next: [Library Management](libr-management.html)