Estimators that have parametric convergence rates can often be fully
characterized by their influence function (IF), also referred
to as an influence curve or canonical gradient (Bickel et al. 1998; Vaart 1998). The IF allows
for the direct estimation of properties of the estimator, including its
asymptotic variance. Moreover, estimates of the IF enable the simple
combination and transformation of estimators into new ones. This
vignette describes how to estimate and manipulate IFs using the
R-package lava
(Holst and
Budtz-Jørgensen 2013).
Formally, let \(Z_1,\ldots,Z_n\) be iid \(k\)-dimensional stochastic variables, \(Z_i=(Y_{i},A_{i},W_{i})\sim P_{0}\), and \(\widehat{\theta}\) a consistent estimator for the parameter \(\theta\in\mathbb{R}^p\). When \(\widehat{\theta}\) is a regular and asymptotic linear (RAL) estimator, it has a unique iid decomposition \[\begin{align*} \sqrt{n}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \operatorname{IC}(Z_i; P_{0}) + o_{P}(1), \end{align*}\] where the function \(\operatorname{IC}\) is the unique Influence Function s.t. \(\mathbb{E}\{\operatorname{IC}(Z_{i}; P_{0})\}=0\) and \(\mathbb{V}\!\text{ar}\{\operatorname{IC}(Z_{i}; P_{0})^{2}\}<\infty\) (Tsiatis 2006; Vaart 1998). The influence function thus fully characterizes the asymptotic behaviour of the estimator and by the central limit theorem it follows that the estimator converges weakly to a Gaussian distribution \[ \sqrt{n}(\widehat{\theta}-\theta) \overset{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \mathbb{V}\!\text{ar}\{\operatorname{IC}(Z; P_{0})\}), \] where the empirical variance of the plugin estimator, \(\mathbb{P}_{n}\operatorname{IC}(Z; \widehat{P})^{\otimes 2} = \frac{1}{n}\sum_{i=1}^n \operatorname{IC}(Z_{i}; \widehat{P})\operatorname{IC}(Z_{i}; \widehat{P})^{\top}\) can be used to obtain a consistent estimate of the asymptotic variance. Note, in practice the estimate \(\widehat{P}\) used in the plugin-estimate, needs only to capture the parts of the distribution of \(Z\) that is necessary to evaluate the IF. In some cases this nuisance parameter can be estimated using flexible machine learning components and in other (parametric) cases be derived directly from \(\widehat{\theta}\).
The IFs are easily derived for the parameters of many parametric statistical models as illustrated in the next example sections. More generally, the IF can also be derived for a smooth target parameter \(\Psi: \mathcal{P}\to\mathbb{R}\) where \(\mathcal{P}\) is a family of probability distributions forming the statistical model, which often can be left completely non-parametric. Formally, the parameter must be pathwise differentiable see (Vaart 1998) in the sense that there exists linear bounded function \(\dot\Psi\colon L_{2}(P_{0})\to\mathbb{R}\) such that \([\Psi(P_{t}) - \Psi(P_{0}))]t^{-1} \to \dot\Psi(P_{0})(g)\) as \(t\to 0\) for any parametric submodel \(P_t\) with score model \(g(z)= \partial/(\partial t) \log (p_t)(z)|_{t=0}\). Riesz’s representation theorem then tells us that the directional derivative has a unique representer, \(\phi_{P_{0}}\) lying in the closure of the submodel score space (the tangent space), s.t. \[\begin{align*} \dot\Psi(P_0)(g) = \langle\phi_{P_0}, g\rangle = \int \phi_{P_0}(Z)g(X)\,dP_0 \end{align*}\] The unique representer is exactly the IF which can be found by solving the above integral equation. For more details on how to derive influence functions, we refer to (Laan and Rose 2011; Hines et al. 2022).
As an example we might be interested in the target parameter \(\Psi(P) = \mathbb{E}_P(Z)\) which can be shown to have the unique (and thereby efficient) influence function \(Z\mapsto Z-\mathbb{E}_P(Z)\) under the non-parametric model. Another target parameter could be \(\Psi_{a}(P) = \mathbb{E}_{P}[\mathbb{E}_{P}(Y\mid A=a, W)]\) which is often a key interest in causal inference and which has the IF \[\begin{align*} \operatorname{IC}(Y,A,W; P) = \frac{\mathbf{1}(A=a)}{\mathbb{P}(A=a\mid W)}(Y-\mathbb{E}_{P}[Y\mid A=a,W]) + \mathbb{E}_{P}[Y\mid A=a,W] - \Psi_{a}(P) \end{align*}\] See section on average treatment effects.
To illustrate the methods we consider data arising from the model \(Y_{ij} \sim Bernoulli\{\operatorname{expit}(X_{ij} + A_{i} + W_{i})\}, A_{i} \sim Bernoulli\{\operatorname{expit}(W_{i})\}\) with independent covariates \(X_{ij}\sim\mathcal{N}(0,1), W_{i}\sim\mathcal{N}(0,1)\).
m <- lvm() |>
regression(y1 ~ x1 + a + w) |>
regression(y2 ~ x2 + a + w) |>
regression(y3 ~ x3 + a + w) |>
regression(y4 ~ x4 + a + w) |>
regression(a ~ w) |>
distribution(~ y1 + y2 + y3 + y4 + a, value = binomial.lvm()) |>
distribution(~id, value = Sequence.lvm(integer = TRUE))
We simulate from the model where \(Y_3\) is only observed for half of the subjects
n <- 4e2
dw <- sim(m, n, seed = 1) |>
transform(y3 = y3 * ifelse(id > n / 2, NA, 1))
Print(dw)
#> y1 x1 a w y2 x2 y3 x3 y4 x4 id
#> 1 1 -0.6265 1 1.0744 0 -1.08691 1 -1.5570 1 0.34419 1
#> 2 1 0.1836 1 1.8957 1 -1.82608 1 1.9232 1 0.01272 2
#> 3 0 -0.8356 0 -0.6030 0 0.99528 0 -1.8568 0 -0.87345 3
#> 4 0 1.5953 0 -0.3909 1 -0.01186 0 -2.1061 1 0.34280 4
#> 5 0 0.3295 1 -0.4162 0 -0.59963 1 0.6976 1 -0.17739 5
#> ---
#> 396 0 -0.92431 0 -1.02939 0 -0.30825 NA -1.05037 0 -0.008056 396
#> 397 1 1.59291 1 -0.01093 1 0.01552 NA 1.63787 1 1.033784 397
#> 398 0 0.04501 0 -1.22499 0 -0.44232 NA -1.20733 0 -0.799127 398
#> 399 0 -0.71513 0 -2.59611 0 -1.63801 NA -2.62616 0 1.004233 399
#> 400 1 0.86522 1 1.16912 0 -0.64140 NA 0.01746 1 -0.311973 400
## Data in long format
dl <- reshape(dw,
varying = list(paste0("y",1:4),
paste0("x",1:4)),
v.names=c("y", "x"), direction="long") |>
na.omit()
dl <- dl[order(dl$id), ]
## dl <- mets::fast.reshape(dw, varying = c("y", "x")) |> na.omit()
Print(dl)
#> a w id time y x
#> 1.1 1 1.074 1 1 1 -0.6265
#> 1.2 1 1.074 1 2 0 -1.0869
#> 1.3 1 1.074 1 3 1 -1.5570
#> 1.4 1 1.074 1 4 1 0.3442
#> 2.1 1 1.896 2 1 1 0.1836
#> ---
#> 399.2 0 -2.596 399 2 0 -1.6380
#> 399.4 0 -2.596 399 4 0 1.0042
#> 400.1 1 1.169 400 1 1 0.8652
#> 400.2 1 1.169 400 2 0 -0.6414
#> 400.4 1 1.169 400 4 1 -0.3120
The main functions for working with influence functions are
estimate
which prepares a model object and estimates
the IF and corresponding robust standard errors. Can also be used to
transform model parameters by application of the Delta Theorem.merge
, +
method for combining estimates
via their estimated IFsIC
method to extract the estimated IFThe estimate
function is the primary tool for obtaining
parameter estimates and related information. It returns an object of the
class type estimate
, which is a general container for
holding information about estimated parameters. The estimate function
takes as input either a model object (the first argument
x
), or a parameter vector and corresponding influence
function (IF) matrix specified using the coef
and
IF
arguments. If the primary goal is to apply the delta
method or test linear hypotheses, it is also possible to provide the
asymptotic variance estimate via the vcov
argument, without
specifying the IF matrix.
Here we first consider the problem of estimating the IF of the mean. For a general transformation \(f: \mathbb{R}^k\to\mathbb{R}^p\) we have that \[ \sqrt{n}\{\mathbb{P}_{n}f(X) - \mathbb{E}[f(X)]\} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} f(X_{i}) - \mathbb{E}[f(X)] \] and hence for the problem of estimating the proportion of the binary outcome \(Y_1\), the IF is given by \(\mathbf{1}(Y_{1}=1) - \mathbb{P}(Y_{1}=1)\).
To estimate this parameter and its IF we will use the
estimate
function
inp <- as.matrix(dw[, c("y1", "y2")])
e <- estimate(inp[, 1, drop = FALSE], type="mean")
class(e)
#> [1] "estimate"
e
#> Estimate Std.Err 2.5% 97.5% P-value
#> y1 0.61 0.02439 0.5622 0.6578 4.435e-138
The reported standard errors from the estimate
method
are the robust standard errors obtained from the IF. The variance
estimate and the parameters can be extracted with the vcov
and coef
methods. The IF itself can be extracted with the
IC
(or influence
) method:
IC(e) |> Print()
#> y1
#> 1 0.39
#> 2 0.39
#> 3 -0.61
#> 4 -0.61
#> 5 -0.61
#> ---
#> 396 -0.61
#> 397 0.39
#> 398 -0.61
#> 399 -0.61
#> 400 0.39
It is also possible to simultaneously estimate the proportions of each of the two binary outcomes
estimate(inp)
#> Estimate Std.Err 2.5% 97.5% P-value
#> y1 0.610 0.02439 0.5622 0.6578 4.435e-138
#> y2 0.535 0.02494 0.4861 0.5839 4.316e-102
or alternatively the input can be a model object, here a
mlm
object:
e <- lm(cbind(y1, y2) ~ 1, data = dw) |>
estimate()
IC(e) |> head()
#> y1:(Intercept) y2:(Intercept)
#> 1 0.39 -0.535
#> 2 0.39 0.465
#> 3 -0.61 -0.535
#> 4 -0.61 0.465
#> 5 -0.61 -0.535
#> 6 -0.61 0.465
Different methods are available for inspecting an
estimate
object
summary(e)
#> Call: estimate.default(x = x, coef = pars(x))
#> ────────────────────────────────────────────────────────────────────────────────
#> Estimate Std.Err 2.5% 97.5% P-value
#> y1:(Intercept) 0.610 0.02439 0.5622 0.6578 4.435e-138
#> y2:(Intercept) 0.535 0.02494 0.4861 0.5839 4.316e-102
#>
#> Null Hypothesis:
#> [y1:(Intercept)] = 0
#> [y2:(Intercept)] = 0
#>
#> chisq = 955.6986, df = 2, p-value < 2.2e-16
## extract parameter coefficients
coef(e)
#> y1:(Intercept) y2:(Intercept)
#> 0.610 0.535
## ## Asymptotic (robust) variance estimate
vcov(e)
#> y1:(Intercept) y2:(Intercept)
#> y1:(Intercept) 5.9475e-04 0.0000841250
#> y2:(Intercept) 8.4125e-05 0.0006219375
## Matrix with estimates and confidence limits
estimate(e, level = 0.99) |> parameter()
#> Estimate Std.Err 0.5% 99.5% P-value
#> y1:(Intercept) 0.610 0.02438750 0.5471820 0.6728180 4.434692e-138
#> y2:(Intercept) 0.535 0.02493867 0.4707622 0.5992378 4.316104e-102
## Influence curve
IC(e) |> head()
#> y1:(Intercept) y2:(Intercept)
#> 1 0.39 -0.535
#> 2 0.39 0.465
#> 3 -0.61 -0.535
#> 4 -0.61 0.465
#> 5 -0.61 -0.535
#> 6 -0.61 0.465
## Join estimates
e + e # Same as merge(e,e)
#> Estimate Std.Err 2.5% 97.5% P-value
#> y1:(Intercept) 0.610 0.02439 0.5622 0.6578 4.435e-138
#> y2:(Intercept) 0.535 0.02494 0.4861 0.5839 4.316e-102
#> ────────────────
#> y1:(Intercept).1 0.610 0.02439 0.5622 0.6578 4.435e-138
#> y2:(Intercept).1 0.535 0.02494 0.4861 0.5839 4.316e-102
For a \(Z\)-estimator defined by the score equation \(E[U(Z; \theta)] = 0\), the IF is given by \[\begin{align*} IC(Z; \theta) = \mathbb{E}\Big\{\frac{\partial}{\partial\theta^\top}U(\theta; Z)\Big\}^{-1}U(Z; \theta) \end{align*}\] In particular, for a maximum likelihood estimator the score, \(U\), is given by the partial derivative of the log-likelihood function.
As an example, we can obtain the estimates with robust standard errors for a logistic regression model:
g <- glm(y1 ~ a + x1, data = dw, family = binomial)
estimate(g)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.2687 0.1622 -0.5867 0.04931 9.772e-02
#> a 1.5595 0.2428 1.0835 2.03545 1.348e-10
#> x1 0.9728 0.1435 0.6916 1.25397 1.198e-11
We can compare that to the usual (non-robust) standard errors:
estimate(g, robust = FALSE)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.2687 0.1589 -0.5802 0.04281 9.091e-02
#> a 1.5595 0.2423 1.0846 2.03433 1.220e-10
#> x1 0.9728 0.1396 0.6992 1.24634 3.177e-12
The IF can be extracted from the estimate
object or
directly from the model object
IC(g) |> head()
#> (Intercept) a x1
#> 1 0.09816353 3.715892 -0.8478763
#> 2 -0.08203584 2.562573 0.7085752
#> 3 -2.74896196 3.316937 1.8772112
#> 4 -6.78328520 4.052090 -9.0268560
#> 5 0.47533946 -11.818085 -4.1056905
#> 6 -2.77584564 3.340948 1.8677174
The same estimates can be obtained with a cumulative link regression model which also generalizes to ordinal outcomes. Here we consider the proportional odds model given by \[\begin{align*} \log\left(\frac{\mathbb{P}(Y\leq j\mid x)}{1-\mathbb{P}(Y\leq j\mid x)}\right) = \alpha_{j} + \beta^{t}x, \quad j=1,\ldots,J \end{align*}\]
ordreg(y1 ~ a + x1, dw, family=binomial(logit)) |> estimate()
#> Estimate Std.Err 2.5% 97.5% P-value
#> 0|1 0.2687 0.1622 -0.04932 0.5867 9.772e-02
#> a 1.5595 0.2429 1.08349 2.0355 1.350e-10
#> x1 0.9728 0.1435 0.69157 1.2540 1.200e-11
Note that the sandwich::estfun
function from the
sandwich
library (Zeileis, Köll, and
Graham 2020) can also estimate the IF for different parametric
models, but does not provide the tools for combining and transforming
these.
To illustrate the methods on survival data we will use the Mayo Clinic Primary Biliary Cholangitis Data (Therneau and Grambsch 2000)
The Cox proportional hazards model can be fitted with the
mets::phreg
method which can estimate the IF for both the
partial likelihood parameters and the baseline hazard. Here we fit a
survival model with right-censored event times
fit.phreg <- mets::phreg(Surv(time, status > 0) ~ age + sex, data = pbc)
fit.phreg
#> Call:
#> mets::phreg(formula = Surv(time, status > 0) ~ age + sex, data = pbc)
#>
#> n events
#> 418 186
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> age 0.0220977 0.0070372 0.0072712 0.0017
#> sexf -0.2999507 0.2022144 0.2097533 0.1380
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> age 1.02234 1.00834 1.0365
#> sexf 0.74085 0.49843 1.1012
IC(fit.phreg) |> head()
#> age sexf
#> 1 0.12691175 2.9551968
#> 2 -0.16011629 -4.3755455
#> 3 0.19322595 -8.1786480
#> 4 0.04668109 0.8548021
#> 5 -0.22936186 0.9721761
#> 6 0.07015171 0.5644414
The IF for the baseline cumulative hazard at a specific time point \[\begin{align*} \Lambda_0(t) = \int_0^t \lambda_0(u)\,du, \end{align*}\] where \(\lambda_0(t)\) is the baseline hazard, can be estimated in similar way:
baseline <- function(object, time, ...) {
ic <- mets::IC(object, baseline = TRUE, time = time, ...)
est <- mets::predictCumhaz(object$cumhaz, new.time = time)[1, 2]
estimate(NULL, coef = est, IC = ic, labels = paste0("chaz:", time))
}
tt <- 2000
baseline(fit.phreg, tt)
#> Estimate Std.Err 2.5% 97.5% P-value
#> chaz:2000 0.178 0.07597 0.02913 0.3269 0.01911
The estimate
and IF
methods are also
available for parametric survival models via
survival::survreg
, here a Weibull model:
survival::survreg(Surv(time, status > 0) ~ age + sex, data = pbc, dist="weibull") |>
estimate()
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 9.02697 0.382437 8.27741 9.776530 3.521e-123
#> age -0.01919 0.006362 -0.03166 -0.006723 2.554e-03
#> sexf 0.28170 0.174338 -0.06000 0.623392 1.061e-01
#> scale 0.87751 0.070693 0.73896 1.016067 2.220e-35
General structural equation models (SEMs) can be estimated with
lava::lvm
. Here we fit a random effects probit model \[
\mathbb{P}(Y_{ij} = 1 \mid U_{i}, W_{ij})=\Phi(\mu_{j} + \beta_{j}
W_{ij} + U_{i}), \quad U_{i}\sim\mathcal{N}(0,\sigma_{u}^{2}),\quad
j=1,2
\] to the simulated dataset
sem <- lvm(y1 + y2 ~ 1 * u + w) |>
latent(~ u) |>
ordinal(K=2, ~ y1 + y2)
semfit <- estimate(sem, data = dw)
## Robust standard errors
estimate(semfit)
#> Estimate Std.Err 2.5% 97.5% P-value
#> y2 -0.21037 0.09391 -0.3944 -0.02630 2.509e-02
#> u 0.36025 0.06659 0.2297 0.49075 6.295e-08
#> y1~w 0.55425 0.06931 0.4184 0.69009 1.272e-15
#> y2~w 0.59388 0.07510 0.4467 0.74107 2.623e-15
#> u~~u -0.09496 0.07360 -0.2392 0.04929 1.970e-01
Let \(\beta\) denote the \(\tau\)th quantile of \(X\), with IF \[\begin{align*} \operatorname{IC}(x; P_{0}) = \tau - \mathbf{1}(x\leq \beta)f_{0}(\beta)^{-1} \end{align*}\]
where \(f_{0}\) is the density function of \(X\).
To calculate the variance estimate, an estimate of the density is
thus needed which can be obtained by a kernel estimate. Alternatively,
the resampling method of (Zeng and Lin
2008) can be applied. Here we use a kernel smoother (additional
arguments to the estimate
function are parsed on to
stats::density.default
) to estimate the quantiles and IF
for the 25%, 50%, and 75% quantiles of \(W\) and \(X_1\)
eq <- estimate(dw[, c("w", "x1")], type = "quantile", probs = c(0.25, 0.5, 0.75))
eq
#> Estimate Std.Err 2.5% 97.5% P-value
#> w.25% -0.81214 0.07277 -0.9548 -0.66951 6.390e-29
#> w.50% -0.11062 0.07201 -0.2518 0.03052 1.245e-01
#> w.75% 0.67716 0.07784 0.5246 0.82973 3.353e-18
#> x1.25% -0.57510 0.06340 -0.6994 -0.45084 1.177e-19
#> x1.50% -0.02664 0.06078 -0.1458 0.09249 6.611e-01
#> x1.75% 0.69590 0.06696 0.5647 0.82715 2.683e-25
IC(eq) |> head()
#> w.25% w.50% w.75% x1.25% x1.50% x1.75%
#> [1,] 0.8402973 1.440254 2.6966215 -2.196201 -1.215663 -0.7732142
#> [2,] 0.8402973 1.440254 2.6966215 0.732067 1.215663 -0.7732142
#> [3,] 0.8402973 -1.440254 -0.8988738 -2.196201 -1.215663 -0.7732142
#> [4,] 0.8402973 -1.440254 -0.8988738 0.732067 1.215663 2.3196427
#> [5,] 0.8402973 -1.440254 -0.8988738 0.732067 1.215663 -0.7732142
#> [6,] 0.8402973 -1.440254 -0.8988738 -2.196201 -1.215663 -0.7732142
A key benefit of working with the IFs of estimators is that this allows for transforming or combining different estimates while easily deriving the resulting IF and thereby asymptotic distribution of the new estimator.
Let \(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{M}\) be \(M\) different estimators with decompositions \[\begin{align*} \sqrt{n}(\widehat{\theta}_{m}-\theta_{m}) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \operatorname{IC}_m(Z_i; P_{0}) + o_{P}(1) \end{align*}\] based on iid data \(Z_1,\ldots,Z_n\). It then follows immediately (Vaart 1998 Theorem 18.10[vi]) that the joint distribution of \(\widehat{\theta} - {\theta}= (\widehat{\theta}_{1}^{\top},\ldots,\widehat{\theta}_{M}^{\top})^\top- ({\theta}_{1}^{\top},\ldots,{\theta}_{M}^{\top})^\top\) is given by \[\begin{align*} \sqrt{n}(\widehat{\theta}-\theta) &= \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \underbrace{[\operatorname{IC}_{1}(Z_i; P_{0})^\top,\ldots,\operatorname{IC}_{M}(Z_i; P_{0})^\top]^{\top}}_{\overline{\operatorname{IC}}(Z_i; P_{0})} + o_{P}(1) \\ &\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}(0,\Sigma) \end{align*}\] by the CLT, and under regulatory conditions \(\mathbb{P}_{n}\overline{\operatorname{IC}}(Z_i; \widehat{P})^{\otimes 2} \overset{P}{\longrightarrow}\Sigma\) as \(n\to\infty\).
To illustrate this we consider two marginal logistic regression
models fitted separately for \(Y_1\)
and \(Y_2\) and combine the estimates
and IFs using the merge
method
g1 <- glm(y1 ~ a, family=binomial, data=dw)
g2 <- glm(y2 ~ a, family=binomial, data=dw)
e <- merge(g1, g2)
summary(e)
#> Call: estimate.default(x = NULL, data = NULL, id = id, stack = FALSE,
#> IC = ic0, keep = keep, coef = coefs)
#> ────────────────────────────────────────────────────────────────────────────────
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.4688 0.09655 1.969e-01
#> a 1.3239 0.2173 0.8981 1.74978 1.105e-09
#> ─────────────
#> (Intercept).1 -0.6168 0.1505 -0.9117 -0.32185 4.152e-05
#> a.1 1.5060 0.2148 1.0849 1.92712 2.385e-12
#>
#> Null Hypothesis:
#> [(Intercept)] = 0
#> [a] = 0
#> [(Intercept).1] = 0
#> [a.1] = 0
#>
#> chisq = 96.4362, df = 4, p-value < 2.2e-16
As we have access to the joint asymptotic distribution we can for example test for whether the odds-ratio is the same for the two responses:
estimate(e, cbind(0,1,0,-1), null=0)
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] - [a.1] -0.1821 0.3003 -0.7707 0.4065 0.5443
#>
#> Null Hypothesis:
#> [a] - [a.1] = 0
More details an be found in the Section on hypothesis testing.
Let \(O_{1} = (Z_{1}R_{1}, R_{1}), \ldots,
O_{N}=(Z_{N}R_{N}, R_{N})\) be iid with \(R_{i}\!\perp\!\!\!\!\perp\!Z_i\) and let
the full-data IF for some estimator of a parameter \(\theta\in\mathbb{R}^p\) be \(IC(\cdot; P_{0})\). For convenience let the
data be ordered \(R_{i}=\mathbf{1}(i\leq
n)\) where \(n\) is the number
of observed data points, then the complete-case estimator is consistent
and based on same IF \[\begin{align*}
\sqrt{n}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^n
IC(Z_i; P_{0}) + o_{P}(1).
\end{align*}\] This estimator can also be decomposed in terms of
the observed data \(O_1,\ldots,O_N\)
noting that \[\begin{align*}
\sqrt{N}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{N}}\sum_{i=1}^N
IC(Z_i;
P)\frac{R_i N}{n} + o_{P}(1).
\end{align*}\] where the term \(\frac{R_i N}{n}\) corresponds to an inverse
probability weighting with the empirical plugin estimate of the
proportion of observed data \(R=1\).
Under a missing completely at random assumption we can therefore combine
estimators that are estimated on different datasets. Let the observed
data be \((Z_{11}R_{11}, R_{11}, Z_{21}R_{21},
R_{21}), \ldots, (Z_{1N}R_{1N}, R_{1N},
Z_{2N}R_{2N}, R_{2N}))\) with complete-case estimators \(\widehat{\theta}_1\) and \(\widehat{\theta}_2\) for parameters \(\theta_1\) and \(\theta_2\) based on \((Z_{11}R_{11}, \ldots, Z_{1N}R_{1N})\) and
\((Z_{21}R_{21}, \ldots,
Z_{2N}R_{2N})\), respectively, and let the corresponding IFs be
\(IC_{1}(\cdot; P_{0})\) and \(IC_{2}(\cdot;\ P)\). It then follows that
\[\begin{align*}
\sqrt{N}\left\{
\begin{pmatrix}
\widehat{\theta}_1 \\
\widehat{\theta}_2
\end{pmatrix}
-
\begin{pmatrix}
\vphantom{\widehat{\theta}_1}\theta_1 \\
\vphantom{\widehat{\theta}_1}\theta_2
\end{pmatrix}
\right\}
=
\frac{1}{\sqrt{N}}\sum_{i=1}^N
\begin{pmatrix}
IC_1(Z_{1i}; P_{0})\frac{R_{1i}N}{R_{1\bullet}} \\
IC_2(Z_{2i}; P_{0})\frac{R_{2i}N}{R_{2\bullet}}
\end{pmatrix}
+ o_{P}(1)
\end{align*}\] with \(R_{k\bullet} =
\sum_{i=1}^{N}R_{ki}.\) Returning to the example, we can combine
the marginal estimates of two model objects that have been estimated
from different datasets (as the outcome \(Y_3\) is only available in half of the
data). Here we will use the overloaded +
operator
g2 <- glm(y2 ~ 1, family = binomial, data = dw)
summary(g2)
#>
#> Call:
#> glm(formula = y2 ~ 1, family = binomial, data = dw)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.1402 0.1002 1.399 0.162
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 552.56 on 399 degrees of freedom
#> Residual deviance: 552.56 on 399 degrees of freedom
#> AIC: 554.56
#>
#> Number of Fisher Scoring iterations: 3
dwc <- na.omit(dw)
g3 <- glm(y3 ~ 1, family = binomial, data = dwc)
summary(g3)
#>
#> Call:
#> glm(formula = y3 ~ 1, family = binomial, data = dwc)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.2615 0.1426 1.833 0.0668 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 273.87 on 199 degrees of freedom
#> Residual deviance: 273.87 on 199 degrees of freedom
#> AIC: 275.87
#>
#> Number of Fisher Scoring iterations: 3
e2 <- estimate(g2, id = dw$id)
e3 <- estimate(g3, id = "id", data=dwc)
merge(e2,e3) |> IC() |> Print()
#> (Intercept) (Intercept).1
#> 1 -2.151 3.540
#> 2 1.869 3.540
#> 3 -2.151 -4.598
#> 4 1.869 -4.598
#> 5 -2.151 3.540
#> ---
#> 396 -2.151 0.000
#> 397 1.869 0.000
#> 398 -2.151 0.000
#> 399 -2.151 0.000
#> 400 -2.151 0.000
vcov(e2 + e3)
#> (Intercept) (Intercept).1
#> (Intercept) 0.010049191 0.002102598
#> (Intercept).1 0.002102598 0.020342639
## Same marginals as
list(vcov(e2), vcov(e3))
#> [[1]]
#> (Intercept)
#> (Intercept) 0.01004919
#>
#> [[2]]
#> (Intercept)
#> (Intercept) 0.02034264
Note, it is also possible to directly specify the id-variables in the
merge
call:
merge(e2, e3, id = list(dw$id, dwc$id))
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.1402 0.1002 -0.05625 0.3367 0.16186
#> ─────────────
#> (Intercept).1 0.2615 0.1426 -0.01807 0.5410 0.06676
In the above example the id
argument defines the
identifier that makes it possible to link the rows in the different IFs
that should be glued together. If omitted then the id
will
automatically be extracted from the model-specific IC
method (deriving it from the original data.frame used for estimating the
model). This automatically works with all models and IC
methods described in this document.
estimate(g2) |>
IC() |> head()
#> (Intercept)
#> 1 -2.150532
#> 2 1.869154
#> 3 -2.150532
#> 4 1.869154
#> 5 -2.150532
#> 6 1.869154
vcov(estimate(g2) + estimate(g3))
#> (Intercept) (Intercept).1
#> (Intercept) 0.010049191 0.002102598
#> (Intercept).1 0.002102598 0.020342639
(estimate(g2) + estimate(g3)) |>
(rownames %++% head %++% IC)()
#> [1] "1" "10" "100" "101" "102" "103"
To force that the id variables are not overlapping between the merged
model objects, i.e., assuming that there is complete independence
between the estimates, the argument id=NULL
can be used
merge(g1, g2, id = NULL) |> (Print %++% IC)()
#> (Intercept) a (Intercept).1
#> 1 -5.047e-15 5.128e+00 0.000e+00
#> 2 -5.047e-15 5.128e+00 0.000e+00
#> 3 -7.547e+00 7.547e+00 0.000e+00
#> 4 -7.547e+00 7.547e+00 0.000e+00
#> 5 1.673e-14 -1.600e+01 0.000e+00
#> ---
#> 796 0.000 0.000 3.738
#> 797 0.000 0.000 3.738
#> 798 0.000 0.000 -4.301
#> 799 0.000 0.000 -4.301
#> 800 0.000 0.000 -4.301
merge(g1, g2, id = NULL) |> vcov()
#> (Intercept) a (Intercept).1
#> (Intercept) 2.079760e-02 -2.079760e-02 2.700089e-29
#> a -2.079760e-02 4.720777e-02 -1.552978e-25
#> (Intercept).1 2.700089e-29 -1.552978e-25 1.004919e-02
To only keep a subset of the parameters the keep
argument can be used.
merge(g1, g2, keep = c("(Intercept)", "(Intercept).1"))
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.46876 0.09655 0.1969
#> (Intercept).1 0.1402 0.1002 -0.05625 0.33671 0.1619
The argument can be given either as character vector or a vector of indices:
merge(g1,g2, keep=c(1, 3))
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.46876 0.09655 0.1969
#> (Intercept).1 0.1402 0.1002 -0.05625 0.33671 0.1619
or as a vector of perl-style regular expressions
merge(g1, g2, keep = "cept", regex = TRUE)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.46876 0.09655 0.1969
#> (Intercept).1 0.1402 0.1002 -0.05625 0.33671 0.1619
merge(g1, g2, keep = c("\\)$", "^a$"), regex = TRUE, ignore.case = TRUE)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.4688 0.09655 1.969e-01
#> a 1.3239 0.2173 0.8981 1.74978 1.105e-09
When merging estimates unique parameter names are created. It is also
possible to rename the parameters with the labels
argument
merge(g1, g2, labels = c("a", "b", "c")) |> estimate(keep = c("a", "c"))
#> Estimate Std.Err 2.5% 97.5% P-value
#> a -0.1861 0.1442 -0.46876 0.09655 0.1969
#> c 0.1402 0.1002 -0.05625 0.33671 0.1619
merge(g1, g2,
labels = c("a", "b", "c"),
keep = c("a", "c")
)
#> Estimate Std.Err 2.5% 97.5% P-value
#> a -0.1861 0.1442 -0.46876 0.09655 0.1969
#> c 0.1402 0.1002 -0.05625 0.33671 0.1619
estimate(g1, labels=c("a", "b"))
#> Estimate Std.Err 2.5% 97.5% P-value
#> a -0.1861 0.1442 -0.4688 0.09655 1.969e-01
#> b 1.3239 0.2173 0.8981 1.74978 1.105e-09
Finally, the subset
argument can be used to subset the
parameters and IFs before the actual merging is being done
Let \(Z_i = (Z_{i1},\ldots,Z_{iN_{i}})\) and assume that \((Z_{i}, N_{i}) \sim P\), \(i=1,\ldots,n\) are iid and \(N_i\!\perp\!\!\!\!\perp\! Z_{ij}\). The variables \(Z_{i1},\ldots,Z_{iN_{i}}\) we assume are exchangeable but not necessarily independent. Define \(N = \sum_{i=1}^{n} N_i\), and assume that a parameter estimate, \(\widehat{\theta}\in\mathbb{R}^p\) has the decomposition \[ \sqrt{N}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{N}} \sum_{i=1}^{n} \sum_{k=1}^{N_{i}} IC(Z_{ik}; P_{0}) + o_{P}(1). \] It then follows that \[ \sqrt{n}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widetilde{\operatorname{IC}}(Z_{i}; P_{0}) + o_{P}(1) \] with \(\widetilde{\operatorname{IC}}(Z_{i}; P_{0}) = \sum_{k=1}^{N_{i}} \frac{n}{N}IC(Z_{ik}; P_{0})\), \(i=1,\ldots,n\) which are iid an therefore admits the usual CLT to derive the asymptotic variance of \(\widehat{\theta}\). Turning back to the example data, we can estimate the marginal model
The asymptotic variance estimate ignoring that the observations are not independent is not consistent. Instead we can calculate the cluster robust standard errors from the above iid decomposition
estimate(g0, id=dl$id)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1147 0.09351 -0.2979 0.06862 2.201e-01
#> a 1.0178 0.13016 0.7627 1.27288 5.303e-15
#> w 0.9825 0.07421 0.8370 1.12791 5.278e-40
#> x 0.9485 0.07835 0.7949 1.10203 9.976e-34
We can confirm that this situation is equivalent to the variance estimates we obtain from a GEE marginal model with working independence correlation structure (Halekoh, Højsgaard, and Yan 2006)
gee0 <- geepack::geeglm(y ~ a + w + x, data = dl, id = dl$id, family=binomial)
summary(gee0)
#>
#> Call:
#> geepack::geeglm(formula = y ~ a + w + x, family = binomial, data = dl,
#> id = dl$id)
#>
#> Coefficients:
#> Estimate Std.err Wald Pr(>|W|)
#> (Intercept) -0.11466 0.09351 1.504 0.22
#> a 1.01777 0.13016 61.145 5.33e-15 ***
#> w 0.98246 0.07421 175.250 < 2e-16 ***
#> x 0.94845 0.07835 146.523 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Correlation structure = independence
#> Estimated Scale Parameters:
#>
#> Estimate Std.err
#> (Intercept) 0.9538 0.098
#> Number of clusters: 400 Maximum cluster size: 4
Working with large and potentially multiple different IFs can be memory-intensive. A remedy is to use the idea of aggregating the IFs by introducing a random coarser grouping variable. Following the same arguments as in the previous section, the aggregated IF will still be iid and allows us to estimate the asymptotic variance. Obviously, the same grouping must be used across estimates when combining IFs.
set.seed(1)
y <- cbind(rnorm(1e5))
N <- 2e2 ## Number of aggregated groups, the number of observations in the new IF
id <- foldr(nrow(y), N, list=FALSE)
Print(cbind(table(id)))
#> [,1]
#> 1 500
#> 2 500
#> 3 500
#> 4 500
#> 5 500
#> ---
#> 196 500
#> 197 500
#> 198 500
#> 199 500
#> 200 500
## Aggregated IF
e <- estimate(cbind(y), id = id)
object.size(e)
#> 18992 bytes
e
#> Estimate Std.Err 2.5% 97.5% P-value
#> p1 -0.002244 0.00332 -0.008751 0.004263 0.4991
Let \(\phi\colon \mathbb{R}^p\to\mathbb{R}^m\) be differentiable at \(\theta\) and assume that \(\widehat{\theta}_n\) is RAL estimator with IF given by \(\operatorname{IC}(\cdot; P_{0})\) such that \[\begin{align*} \sqrt{n}(\widehat{\theta}_n - \theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \operatorname{IC}(Z_i; P_{0}) + o_{P}(1), \end{align*}\] then by the delta method (Vaart 1998 Theorem 3.1) \[\begin{align*} \sqrt{n}\{\phi(\widehat{\theta}_n) - \phi(\theta)\} = \frac{1}{\sqrt{n}}\sum_{i=1}^n \nabla\phi(\theta)\operatorname{IC}(Z_i; P_{0}) + o_{P}(1), \end{align*}\]
where \(\phi\colon \theta\mapsto (\phi_{1}(\theta),\ldots,\phi_{m}(\theta))^\top\) and \(\nabla\) is the partial derivative operator \[\begin{align*} \nabla\phi(\theta) = \begin{pmatrix} \tfrac{\partial}{\partial\theta_1}\phi_1(\theta) & \cdots & \tfrac{\partial}{\partial\theta_p}\phi_1(\theta) \\ \vdots & \ddots & \vdots \\ \tfrac{\partial}{\partial\theta_1}\phi_m(\theta) & \cdots & \tfrac{\partial}{\partial\theta_p}\phi_m(\theta) \\ \end{pmatrix}. \end{align*}\]
Together with the ability to derive the joint IF from marginal IFs, this provides us with a powerful tool for constructing new estimates using the IFs as the fundamental building blocks.
To apply the delta method the transformation of the parameters
function must be supplied to the estimate
method (argument
f
)
estimate(g1, sum)
#> Estimate Std.Err 2.5% 97.5% P-value
#> p1 1.138 0.1625 0.8193 1.456 2.532e-12
estimate(g1, function(p) list(a = sum(p))) # named list
#> Estimate Std.Err 2.5% 97.5% P-value
#> a 1.138 0.1625 0.8193 1.456 2.532e-12
## Multiple parameters
estimate(g1, function(x) c(x, x[1] + exp(x[2]), inv = 1 / x[2]))
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.4688 0.09655 1.969e-01
#> a 1.3239 0.2173 0.8981 1.74978 1.105e-09
#> (Intercept).1 3.5721 0.7289 2.1435 5.00062 9.539e-07
#> inv.a 0.7553 0.1240 0.5124 0.99828 1.105e-09
estimate(g1, exp)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.8302 0.1197 0.5955 1.065 4.087e-12
#> a 3.7582 0.8166 2.1578 5.359 4.175e-06
The gradient can be provided as the attribute grad
and
otherwise numerical differentiation is applied.
As a simple toy example consider the problem of estimating the covariance of two variables \(X_1\) and \(X_2\) \[\begin{align*} \widehat{\mathbb{C}\!\text{ov}}(X_1,X_2) = \mathbb{P}_n(X_1-\mathbb{P}_n X_1)(Y_1-\mathbb{P}_n Y_1). \end{align*}\] It is easily verified that the IF of the sample estimate of \((\mathbb{E}X_{1}, \mathbb{E} X_{2}, \mathbb{E}\{X_{1}X_{2}\})^\top\) given by is \(\operatorname{IC}(X1,X2; P_{0}) = (X_{1}-\mathbb{E}X_{1}, X_{2}-\mathbb{E}X_{2}, X_{1}X_{2}-\mathbb{E}\{X_{1}X_{2}\})^\top\). By the delta theorem with \(\phi(x,y,z) = z-xy\) we have \(\nabla\phi(x,y,z) = (-y -x 1)\) and thus the IF for the sample covariance estimate becomes \[\begin{align*} \operatorname{IC}_{x_1, x_2}(X_1, X_2; P_{0}) = (X_1 - \mathbb{E}X_1)(X_2 - \mathbb{E}X_2) - \mathbb{C}\!\text{ov}(X_1,X_2) \end{align*}\]
We can implement this directly using the estimate
function via the IC
argument which allows us to provide a
user-specificed IF and with the point estimate given by the
coef
argument
Cov <- function(x, y, ...) {
est <- mean(x * y)-mean(x)*mean(y)
estimate(
coef = est,
IC = (x - mean(x)) * (y - mean(y)) - est,
...
)
}
with(dw, Cov(x1, x2))
#> Estimate Std.Err 2.5% 97.5% P-value
#> 0.004043 0.04976 -0.09349 0.1016 0.9352
As an illustration we could also derive this estimate from simpler building blocks of \(\mathbb{E}X_{1}\), \(\mathbb{E}X_{2}\), and \(\mathbb{E}(X_{1}X_{2})\).
e1 <- lm(cbind(x1, x2, x1 * x2) ~ 1, data = dw) |>
estimate(labels = c("Ex1", "Ex2", "Ex1x2"))
e1
#> Estimate Std.Err 2.5% 97.5% P-value
#> Ex1 0.038089 0.04842 -0.05681 0.13298 0.4315
#> Ex2 -0.037026 0.05187 -0.13869 0.06464 0.4753
#> Ex1x2 0.002633 0.05003 -0.09541 0.10068 0.9580
estimate(e1, function(x) c(x, cov=with(as.list(x), Ex1x2 - Ex2* Ex1)))
#> Estimate Std.Err 2.5% 97.5% P-value
#> Ex1 0.038089 0.04842 -0.05681 0.13298 0.4315
#> Ex2 -0.037026 0.05187 -0.13869 0.06464 0.4753
#> Ex1x2 0.002633 0.05003 -0.09541 0.10068 0.9580
#> cov 0.004043 0.04976 -0.09349 0.10158 0.9352
The variance estimates can be estimated in the same way and the combined estimates be used to estimate the correlation
e2 <- with(dw, Cov(x1, x2, labels = "c", id = id) +
Cov(x1, x1, labels = "v1", id = id) +
Cov(x2, x2, labels = "v2", id = id))
rho <- estimate(e2, function(x) list(rho = x[1] / (x[2] * x[3])^.5))
rho
#> Estimate Std.Err 2.5% 97.5% P-value
#> rho 0.004025 0.04953 -0.09306 0.1011 0.9352
by using a variance stabilizing transformation, Fishers \(z\)-transform (Lehmann and Romano 2023), \(z = \operatorname{arctanh}(\widehat{\rho}) = \frac{1}{2}\log\left(\frac{1+\widehat{\rho}}{1-\widehat{\rho}}\right)\), confidence limits with general better coverage can be obtained
estimate(rho, atanh, back.transform = tanh)
#> Estimate Std.Err 2.5% 97.5% P-value
#> rho 0.004025 -0.09279 0.1008 0.9352
The confidence limits are calculated on the \(\operatorname{arctanh}\)-scale and
transformed back to the original correlation scale via the
back.transform
argument. In this case, where the estimates
are far away from the boundary of the parameter space, the variance
stabilizing transform does almost not have any impact, and the
confidence limits agrees with the original symmetric confidence
limits.
An important special case of parameter transformations are linear transformations. A particular interest may be formulated around testing null-hypotheses of the form \[\begin{align*} H_0\colon\quad \mathbf{B}\theta = \mathbf{b}_0 \end{align*}\]
where \(\mathbf{B}\in\mathbb{R}^{m\times p}\) is a matrix of estimable contrasts and \(\mathbf{b}_0\in\mathbb{R}^{m}\).
As an example consider marginal models for the binary response variables \(Y_1, Y_2, Y_3, Y_4\)
g <- lapply(
list(y1 ~ a, y2 ~ a, y3 ~ a), #, y4 ~ a+x4),
function(f) glm(f, family = binomial, data = dw)
)
gg <- Reduce(merge, g)
gg
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.1861 0.1442 -0.4688 0.09655 1.969e-01
#> a 1.3239 0.2173 0.8981 1.74978 1.105e-09
#> ─────────────
#> (Intercept).1 -0.6168 0.1505 -0.9117 -0.32185 4.152e-05
#> a.1 1.5060 0.2148 1.0849 1.92712 2.385e-12
#> ─────────────
#> (Intercept).2 -0.2938 0.2063 -0.6982 0.11064 1.545e-01
#> a.2 1.1047 0.2962 0.5242 1.68515 1.914e-04
A linear transformation can be specified via the f
as a
matrix argument instead of function object
B <- cbind(0,1, 0,-1, 0,0)
estimate(gg, B)
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] - [a.1] -0.1821 0.3003 -0.7707 0.4065 0.5443
#>
#> Null Hypothesis:
#> [a] - [a.1] = 0
The \(\mathbf{b}_0\) vector (default
assumed to be zero) can be specified via the null
argument
estimate(gg, B, null=1)
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] - [a.1] -0.1821 0.3003 -0.7707 0.4065 8.281e-05
#>
#> Null Hypothesis:
#> [a] - [a.1] = 1
For testing multiple hypotheses we use that \((\mathbf{B}\widehat{\theta}-\mathbf{b}_0)^{\top}
(\mathbf{B}\widehat{\Sigma}\mathbf{B}^{\top})^{-1}
(\mathbf{B}\widehat{\theta}-\mathbf{b}_0) \sim
\chi^2_{\operatorname{rank}(B)}\) under the null hypothesis where
\(\widehat{\Sigma}\) is the estimated
variance of \(\theta\) (i.e.,
vcov(gg)
)
B <- rbind(cbind(0,1, 0,-1, 0,0),
cbind(0,1, 0,0, 0,-1))
estimate(gg, B)
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] - [a.1] -0.1821 0.3003 -0.7707 0.4065 0.5443
#> [a] - [a.2] 0.2192 0.3637 -0.4936 0.9321 0.5466
#>
#> Null Hypothesis:
#> [a] - [a.1] = 0
#> [a] - [a.2] = 0
#>
#> chisq = 1.343, df = 2, p-value = 0.5109
Such linear statistics can also be specified directly as expressions of the parameter names
estimate(gg, a + a.1, 2*a - a.2, a, null=c(2,1,1))
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] + [a.1] 2.830 0.3107 2.2210 3.439 0.007557
#> 2[a] - [a.2] 1.543 0.5208 0.5224 2.564 0.296991
#> [a] 1.324 0.2173 0.8981 1.750 0.135985
#>
#> Null Hypothesis:
#> [a] + [a.1] = 2
#> 2[a] - [a.2] = 1
#> [a] = 1
#>
#> chisq = 7.557, df = 3, p-value = 0.05612
We refer to the function lava::contr
and
lava::parsedesigns
for defining contrast matrices.
contr(list(1, c(1, 2), c(1, 4)), n = 5)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 0 0 0 0
#> [2,] 1 -1 0 0 0
#> [3,] 1 0 0 -1 0
A particular useful contrast is the following for considering all pairwise comparisons of different exposure estimates:
pairwise.diff(3)
#> [,1] [,2] [,3]
#> [1,] 1 -1 0
#> [2,] 1 0 -1
#> [3,] 0 1 -1
estimate(gg, pairwise.diff(3), null=c(1,1,1), use=c(2,4,6))
#> Estimate Std.Err 2.5% 97.5% P-value
#> [a] - [a.1] -0.1821 0.3003 -0.7707 0.4065 8.281e-05
#> [a] - [a.2] 0.2192 0.3637 -0.4936 0.9321 3.182e-02
#> [a.1] - [a.2] 0.4013 0.3506 -0.2858 1.0885 8.773e-02
#>
#> Null Hypothesis:
#> [a] - [a.1] = 1
#> [a] - [a.2] = 1
#> [a.1] - [a.2] = 1
#>
#> chisq = 11.96, df = 2, p-value = 0.002523
When conducting multiple tests each at a nominal-level of \(\alpha\) the overall type I error is not
controlled at \(\alpha\)-level.
The influence function also allows for adjusting for multiple
comparisons. Let \(Z_{1},\ldots,Z_{p}\)
denote \(Z\)-statistics from \(p\) distinct two-sided hypothesis tests
which we will assume is asymptotically distributed under the null
hypothesis as a zero-mean Gaussian distribution with correlation matrix
\(R.\) Let \(Z_{max} = \max_{i=1,\ldots,p} |Z_i|\) then
the family-wise error rate (FWER) under the null can be approximated by
\[ P(Z_{max} > z) =
1-\int_{-z}^{z} \cdots \int_{-z}^{z} \phi_{R}(x_{1},\ldots,x_{p})
\,dx_{1}\cdots\,dx_{p} \] where \(\phi_{R}\) is the multivariate normal
density function with mean 0 and variance given by the correlation
matrix \(R\). The adjusted \(p\)-values can then be calculated as \[P(Z_{max} >
\Phi^{-1}(1-p/2))\] where \(\Phi\) is the standard Gaussian CDF. As
described in in (Pipper, Ritz, and Bisgaard
2012) the joint distribution of \(Z_{1},\ldots,Z_{p}\) can be estimated from
the IFs. This is implemented in the p.correct
method
gg0 <- estimate(gg, use="^a", regex=TRUE, null=rep(.8, 3))
p.correct(gg0)
#> Estimate P-value Adj.P-value
#> [a] 1.324 0.015891 0.046870
#> [a.1] 1.506 0.001015 0.003043
#> [a.2] 1.105 0.303571 0.661497
#> attr(,"adjusted.significance.level")
#> [1] 0.01698
While this always yields a more powerful test compared to Bonferroni adjustments, a more powerful closed-testing procedure (Marcus, Eric, and Gabriel 1976), can be generally obtained by considering all intersection hypotheses.
To reject the \(H_{1}\) at an correct \(\alpha\)-level we should test all intersection hypotheses involving \(H_{1}\) and check if there all are rejected at the \(\alpha\)-level. The adjusted \(p\)-values can here be obtained as the maximum \(p\)-value across all the composite hypothesis tests. Unfortunately, this only works for relatively few comparisons as the number of tests grows exponentially.
Some parameters of interest are expressed as averages over functions of the observed data and estimated parameters of a model. The asymptotic distribution can in some of these cases also be derived from the influence function. Let \(Z_{1},\ldots,Z_{n}\) be iid observations, \(Z_{1}\sim P_{0}\) and let \(X_{i}\subset Z_{i}\).
Assume that \(\widehat{\theta}\) is RAL estimator of \(\theta\in\Omega\subset \mathbb{R}^{p}\) \[\sqrt{n}(\widehat{\theta}-\theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi(Z_{i}; P_{0}) + o_{P}(1). \] Let \(f:\mathcal{X}\times\Omega\to\mathbb{R}\) be continuous differentiable in \(\theta\) \[\sqrt{n}\{f(X; \widehat{\theta})-f(X; \theta)\} = \frac{1}{\sqrt{n}}\nabla_{\theta}f(X;\theta)\sum_{i=1}^{n}\phi(Z_{i}; P) + o_{P}(1). \]
Let \(\Psi = P_{0}f(X;\theta)\) and \(\widehat{\Psi} = P_{n} f(X;\widehat{\theta})\). \(P_{0}\) and \(P_{n}\) are here everywhere the integrals wrt. \(X\). It is easily verified that \[\begin{align*} \widehat{\Psi}-\Psi &= (P_{n}-P_{0})(f(X; \theta)-\Psi) + P[f(X;\widehat{\theta})-f(X;\theta)] \\ &\quad + (P_{n}-P_{0})[f(X;\widehat{\theta})-f(X;\theta)] \end{align*}\]
From Lemma 19.24 (Vaart 1998) it follows that for the last term \[\begin{align*} \sqrt{n}(P_{n}-P_{0})[f(X;\widehat{\theta})-f(X;\theta)] = o_{P}(1) \end{align*}\] when \(f\) for example is Lipschitz and more generally when \(f(X;\theta)\) forms a \(P_{0}\)-Donsker class.
It therefore follows that \[\begin{align*} \sqrt{n}(\widehat{\Psi}-\Psi) &= \sqrt{n}P_{n}(f(X; \theta)-\Psi) + \frac{1}{\sqrt{n}}P\nabla_{\theta}f(X;\theta)\sum_{i=1}^{n}\phi(Z_{i}; P_{0}) + o_{P}(1) \\ &= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\{f(X;\theta)-\Psi\} + \frac{1}{\sqrt{n}}P\nabla_{\theta}f(X;\theta)\sum_{i=1}^{n}\phi(Z_{i}, P_{0}) + o_{P}(1) \end{align*}\] Hence the IF for \(\widehat{\Psi}\) becomes \[ IC(Z; P_{0}) = f(X;\theta)-\Psi + [P_{0}\nabla_{\theta}f(X;\theta)]\phi(Z). \]
Turning back to the example we can estimate the logistic regression model \(\operatorname{logit}(E\{Y_1 | A,X_1,W\}) = \beta_0 + \beta_a A + \beta_{x_1} X_1 + \beta_w W\), and from this we want to estimate the target parameter \[ \theta(P) = \mathbb{E}_{P}[E(Y\mid A=1, X_{1}, W)]. \] To do this we need first to estimate the model and then define a function that gives the predicted probability \(\mathbb{P}(Y=1\mid,A=a,X_{1},W)\) for any observed values of \(X_1,W\) but with the treatment variable \(A\) kept fixed at the value \(1\)
g <- glm(y1 ~ a + x1 + w, data=dw, family=binomial)
pr <- function(p, data, ...)
with(data, expit(p[1] + p["a"] + p["x1"]*x1 + p["w"]*w))
pr(coef(g), dw) |> head()
#> [1] 0.8307 0.9651 0.4234 0.9337 0.7669 0.4834
The target parameter can now be estimated with the syntax
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: aarch64-apple-darwin24.2.0
#> Running under: macOS Sequoia 15.2
#>
#> Matrix products: default
#> BLAS: /Users/klaus/.asdf/installs/R/4.4.2/lib/R/lib/libRblas.dylib
#> LAPACK: /Users/klaus/.asdf/installs/R/4.4.2/lib/R/lib/libRlapack.dylib; LAPACK version 3.12.0
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: Europe/Copenhagen
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] survival_3.8-3 lava_1.8.1
#>
#> loaded via a namespace (and not attached):
#> [1] sass_0.4.9 future_1.34.0 generics_0.1.3
#> [4] tidyr_1.3.1 lattice_0.22-6 listenv_0.9.1
#> [7] digest_0.6.37 magrittr_2.0.3 evaluate_1.0.1
#> [10] grid_4.4.2 mvtnorm_1.3-2 fastmap_1.2.0
#> [13] jsonlite_1.8.9 Matrix_1.7-1 backports_1.5.0
#> [16] graph_1.84.0 purrr_1.0.2 Rgraphviz_2.50.0
#> [19] codetools_0.2-20 numDeriv_2016.8-1.1 jquerylib_0.1.4
#> [22] cli_3.6.3 rlang_1.1.4 mets_1.3.5
#> [25] parallelly_1.41.0 future.apply_1.11.3 splines_4.4.2
#> [28] geepack_1.3.12 cachem_1.1.0 yaml_2.3.10
#> [31] tools_4.4.2 parallel_4.4.2 dplyr_1.1.4
#> [34] globals_0.16.3 BiocGenerics_0.52.0 broom_1.0.7
#> [37] vctrs_0.6.5 R6_2.5.1 stats4_4.4.2
#> [40] lifecycle_1.0.4 MASS_7.3-64 pkgconfig_2.0.3
#> [43] timereg_2.0.6 progressr_0.15.1 bslib_0.8.0
#> [46] pillar_1.10.1 glue_1.8.0 Rcpp_1.0.13-1
#> [49] xfun_0.50 tibble_3.2.1 tidyselect_1.2.1
#> [52] knitr_1.49 htmltools_0.5.8.1 rmarkdown_2.29
#> [55] compiler_4.4.2