lava 1.8.1
sim.default
now accepts the argument R
to
be a list (of lists) of arguments.
- New methods
subset.estimate
,
transform.estimate
, labels.estimate
lava 1.8.0
- New methods
estimate.mlm
, IC.mlm
,
pars.mlm
, estimate.array
,
estimate.data.frame
Print
method for tabular data (matrix, data.frame,
data.table)
merge
now supports regular expressions
IC
returns row-names (default id) as obtained from
model.matrix or similar
- New vignette: Influence Functions
- operators
%in.open%
, %in.closed%
for
checking if elements are within a range
3 %in.open% c(0,1)
)
estimate(..., estimator='glm')
now works with formulas
with just an intercept
as.data.frame.sim
, as.matrix.sim
- fixed issues with quasi* families and negative binomial regr
(MASS:glm.nb)
lava 1.7.3
parameter.estimate
method to extract matrix with
estimates, standard errors, and confidence limits from and estimate
object (coefmat element)
- pairwise difference with
'-'.estimate
and
pairwise.diff
- Optional mc.cores arguments to
cv
and
bootstrap
parameter.lvm
now automatically removes previously
variables in the lvm object with same name as new added parameters.
Print
function deals more gracefully with
non-rectangular objects
- bug-fix in
stack.estimate
(wrong stand-errors in
twostage
since version 1.7.0)
lava 1.7.2.1
- Maintenance release as version 1.7.2 broke compatibility with
R<4.1.
lava 1.7.2
- Compatibility issues with development version of R fixed.
- cluster.index now also works when not loading the package (directly
calling lava::estimate)
weibull.lvm
and coxExponential.lvm
now
uses default parametrizations similar to rweibull
,
rexp
. weibull.lvm
now has arguments
“intercept”,“sigma” that directly relates to the accelerated failure
time formulation.
- Packages
gof
, lava.tobit
are removed from
Suggested packages.
lava 1.7.1
- Fixed bug in variance estimates from
estimate
with
clustered observations.
- Discrete uniform distributions can now be specified with
uniform.lvm(value=...)
.
lava 1.7.0
cv
method moved to the ‘targeted’ package
- New
IC
method that returns influence function of a
model object. The iid
argument iid
of the
estimate
method is now replaced with an argument
IC
(with a user supplied matrix this must now be the actual
influence function and not the sample-size scaled version returned by
the iid
method).
- fixed bug where calls like
regression("y", value=function(x) x)
did not work.
merge.estimate
now works without IC element
lava 1.6.10
- Improved starting values for MLE optimization.
- New simulation distributions:
multinomial.lvm
,
none.lvm
, constant.lvm
,
id.lvm
.
regression
, regression.lvm
: the ‘value’
argument can now be a (non-linear) function specifying the functional
relationship between outcomes and covariates (for simulation with the
sim
method).
- New
intervention
method for applying interventions on
lvm
-objects
- Progress updates are now done via the
progressr
library
(enabled with progressr::handlers(global=TRUE)
).
- Parallelization is now controlled via the future library. To enable
multicore parallelization:
future::plan("multicore")
.
- New
plot_region
function for adding confidence regions
to plots.
lava 1.6.9
idplot
: now accepts matrix or data.frame as 1st
argument. New argument: return.data.
- Unit tests updated
- Bug fixes:
cv
: rmse output fixed. score: Fixed bug for
linear Gaussian model with argument ‘indiv=TRUE’. estimate.formula: call
object initialized correctly. plot.lvm
: ‘noplot’ argument
now works with all plot engines.
lava 1.6.8.1
- Maintenance release
confpred
: split-conformal prediction method
updated
lava 1.6.8
- Bug-fix:
parameter(m,x)
now returns an lvm object and
not just x
- profile likelihood confidence intervals with tobit/censored
observations.
- Vignettes added
- Estimating partial correlations
- Non-linear latent variable omdels
- Pseudo-inverse used with “normal” estimator
- Starting values for mixture fixed
lava 1.6.7
- Fixed bug in the composite likelihood
complik
when used
with censored variables (Surv objects).
- Fixed regular expression in ‘spaghetti’ function
plot.sim
: ‘rug’ argument is now by default FALSE and
‘auto.layout’ disabled when nr=nc=1.
- base::sequence() is now a generic function and as a consequence
sequence.lvm
has been renamed to Sequence.lvm
.
The function binary.lvm
is now an alias of
ones.lvm
.
lava 1.6.6
- Weighted kmeans++ (
wkm
). Gaussian mixture models
(mvnmix
) are now initialized by default using
kmeans++.
sim
method implemented for mvnmix models.
- Bug fix: Newton-Raphson method (
lava::NR
) used a
numerical approximation of the Hessian even when submitted as attribute
to the objective function.
lava 1.6.5
lava 1.6.4
- New simulation distributions: constant relative risk and risk
difference models as in Richardson, Robins and Wang, 2017):
binomial.rd
, binomial.rr
. Base on new hook
‘simulate_multiple_inputs’ which allows the distribution to depend
non-linearly on multiple different input variables.
sim.lvm
: ‘X’ argument can now fix (manipulate) any
variable and not only exogenous variables.
- Summary function for
sim.default
updated (the
‘estimate’ argument can now be a list with each element being the
estimate position and optionally standard error and true value).
- Starting values updated for mixture models. The parameter names can
be obtained with
mixture(...,names=TRUE)
and set with
mixture(...,control=list(start=...)))
.
- Naming conventions for multigroup parameters: ‘par@g’ (par: name of
parameter, g: first group number where ‘par’ is observed). Starting
values can be specified with estimate(…,control(list(start=…))).
- New print and summary methods for mixture models.
- Renamed (weighted) K-means function ‘km’ to
wkm
.
- Derivative method deriv.function based on complex step
derivatives.
twostageCV
: estimation of mixture models are now
parallelized if mc.cores>1.
lava 1.6.3
- Fixed problems with plots (Rgraphviz)
- Better print method for
twostageCV
- Improved M-step in
mixture
method
lava 1.6.2
twostageCV
: cross-validate two-stage estimator
- rmvn, dmvn moved to mets package (C++ implementation, old versions
renamed to
lava::rmvn0
, lava::dmvn0
)
- mediation proportion handled correctly when direct effect is
zero
- unit tests clean-up (namespace)
merge.lvm
now correctly handles fixed covariance
parameters
lava 1.6.1
- Newton-raphson algorithm made more robust.
- New
sim.as
method. plot.sim
method now by
default only plots density estimates
- Compatibility fix with Matrix library
lava 1.6
- Mixture Latent variable models (
mixture
). Fast version
requires ‘mets’ packages; Gaussian mixture models (mvnmix
);
weighted k-means (km
)
estimate.default
: ‘keep’, ‘use’ arguments can be
specified as regular expressions (with argument regex=TRUE). Summary
method now returns Wald test (null: all parameters being zero).
makemissing
: seed argument added.
- Global change: ‘silent’ argument renamed to ‘messages’
- New utility functions:
Grep
, Na2x
,
x2NA
, wait
, waitclick
,
rotation
, Rot2d
, Rot3d
- Condition numbers calculated via SVD
na.pass0
: returns data.frame with original number of
rows but with zeros (or first level of factors) in the rows with missing
data.
stack
: ‘weights’ argument renamed to ‘propensity’. If
propensity=TRUE, the first argument (model) will be treated as
propensity score model (glm) and ‘predict’ method will be used for the
predictions.
estimate.formula
now by default wraps glm such that the
iid
method return matrix of same size as full data (with
zero rows where data are missing).
- Updated output functions for class ‘sim’ (print method and plot)..
Plot method: density.alpha is applied to each standard error (‘se’)
level.
- composite likelihood (
complik
) refactored + new
example. ordinal
method now cleans up properly when
variables are removed (rmvar
, subset
).
twostage
: fixed for mixture model (class
‘lvm.mixture’). New help page + examples. Predict function updated
(newdata argument where covariate levels can be specified).
lava 1.5.1
- conformal predictions:
confpred
- warnings (char2num used instead of coersion via as.numeric)
%++%
for function compositon
- New
summary.effects
methods with mediation proportion
in the output
- New hook:
remove.hooks
(see example
ordinal.lvm
)
- constrain methods now handled more robustly in
sim.lvm
allowing both vectorized and non-vectorized functions
- Non-linear associations can now be specified with
nonlinear
method. Estimation via the twostage
function.
- Robust standard errors added to the IV estimator (2SLS)
- New cross-validation function:
cv
(and
csplit
function for creating random sets).
lava 1.5
- lava.tobit is longer required for ordinal and censored responses.
Default is now to use the implementation in the ‘mets’ package.
- Composite likelihood method (
complik
) updated
- weight argument renamed to weights in agreement with lm, glm, coxph,
…
sim.default
: new argument ‘arg’ passed on to simulation
function
sim.default
: new argument ‘iter’. If TRUE the iteration
number is passed to function call as first argument (default FALSE)
estimate.default
: Wildcards/global expressions can now
be used for specifying contrasts based on the syntax of the functions
contr
, parsedesign
. See examples on the
help-page. The argument transform.ci has been renamed to
back.transform.
- correlation methods for matrices and data.frames (either pairwise or
full MLE). All methods can now return the influence functions.
revdiag
: dimnames are kept
Combine
: output updated
forestplot
: point estimates shown by default
backdoor
now works without conditioning set (yields all
possible conditioning sets)
- New formula syntax: y+x~v+z same as c(y,x)~v+z
spaghetti
: trend.formula can now contain a factor
statement on the rhs
lava 1.4.7
- Maintenance release
- models can now be specified as y1+y2~x1+x2 instead of
c(y1,2y)~x1+x2
sim
method now has a seed argument
lava 1.4.6
- New backtrace algorithms for Newton-Raphson optimization routine
(
NR
).
diagtest
updated.
lava 1.4.5
- New graph functions:
dsep
: check for d-separation
(conditional independence). backdoor
: check backdoor
criterion of a graph (lvm-object). adjMat
: return adjaceny
matrix. edgeList
: return edge list. ancestors
:
return ancenstors of nodes. descendants
: return descendants
of nodes.
- All simple paths in a graph can now be extracted with:
path(...,all=TRUE)
- Covariance parameters are now reference with
~~
instead
of ,
. Applies to setting starting values in
estimate
, parameters in
sim
,compare
,estimate
,… To use the
old syntax set lava.options(symbol=c("~",","))
.
layout
argument added to lava.options
(default ‘dot’)
- visNetwork support, new
plot.engine
argument added to
plot methods.
bootstrap.lvmfit
now default returns original
estimates.
print
, transform
methods updated
(transform output).
+
operator overloaded for lvm and estimate objects
(merge).
- New composite likelihood function:
complik
.
- New functions for simple association measures:
riskcomp
, rdiff
, rratio
, …
- New argument ‘latent’ in
simulate
method. If FALSE the
latent variables are dropped from the returned data.frame.
modelsearch
by default now shows both directional or
undirectional associations (type=‘all’ vs type=‘cor’).
sim.default
now stores timings. New print functions
(data.table like output).
- lvm model can now be updated with the
sim
function, for
instance setting parameter values for the simulation only once:
m <- sim(m,p=p,...)
, with faster subsequent calls
sim(m,n=n)
.
estimate.default
can now simulate p-values (‘R’
argument). Returns an object which can also be used as input for
estimate
.
- Bug fixes:
NR
optimization with back-tracing; fixed
matrices.lvm
when called without variance parameters; fixed
a bug in r-square computations.
- Contrast matrix can be specified with the function
contr
.
lava 1.4.4
- estimate.default will now use the id-variable of an ‘estimate’
object if the ‘id’ argument is left unspecified. For
multinomial,gkgamma,kappa additional arguments (…) are now parsed on the
‘estimate.default’ (including id).
- Updated print/summary methods for ‘estimate.default’.
Sample/cluster-size added to output.
- Code clean-up and optimization. Smarter calculations of kronecker
products, and some regular expressions updated.
- New function ‘predictlvm’ which return jacobian.
- Intercepts can now be specified via parantheses, e.g., y ~ (-2) +
x
- ‘getoutcome’ with sep argument for splitting ‘|’ statements in
formulas.
- Partial gamma, gkgamma, updated (probability interpretation,
homogeneity tests removed)
- ‘moments’ function now returns conditional mean with multiple rows.
Side effect fixed across multiple functions
- twostage function with support for mixture models
- Beta (Beta.lvm) and Finite Gaussian (GM2.lvm,GM3.lvm) Mixtures
added.
- ‘sim’: parameters can now be specified as part of ‘…’
- summary.sim: calculate Wald CI if confint=TRUE, otherwise use the
user supplied confidence limits.
- Clopper-pearson intervals and exact binomial tests added to
‘diagtest’.
- Interval censoring with ‘normal’ estimator, which now also works
with ‘binary’ definitions.
- default plot style updated.
lava 1.4.3
- partial gamma coefficients (gkgamma)
- Unit tests works with new testthat version
- Avoid trying to fork new processes on windows
(bootstrap,sim.default)
lava 1.4.2
- Code optimization and minor bug fixes
- Travis-CI, unit-tests
- glm estimator update (censored regression)
- polychoric correlations (pcor)
- New utility functions: wrapvec, offdiag
- simulation: regression design on parameters (see weibull + variance
hetereogeneity example in help(‘sim’))
- Byte compile by default
lava 1.4.1
- New plot.estimate method
- Documentation and examples updated
lava 1.4.0
- Linear measurement error model: ‘measurement.error’
- Diagnostic tests: ‘diagtest’
- ‘plotConf’ updated with support for special function terms (I, poly,
ns, …). Old version is available (not in namespace) as
lava:::plotConf0
- Pareto distribution: ‘pareto.lvm’
- Code clean-up/optimization: ‘EventTime’, ‘stack’
- ‘estimate.default’ new syntax for contrast specification
(parsedesign)
- ‘regression.lvm’ with y,x argument (as alias for to,from)
- plot longitudinal data: ‘spaghetti’
- Examples updated
lava 1.3
- New syntax for categorical predictors (method ‘categorical’ and
argument ‘additive=FALSE’ with ’regression method)
- Argument ‘intervals’ added to ‘ones.lvm’ for piece-wise constant
effects
- Argument ‘average=TRUE’ now needed for empirical averages in
estimate.default
- Fixed a bug in score.glm (with weights and offset) introduced in
version 1.2.6
- estimate.default:
- small-sample corrections
- Default id from row names in estimate.default (used with merge
method)
- iid decompostion also returned for hypothesis contrasts
- keep argument added to estimate.default and merge
- labels argument added to estimate.default
- ‘images’ function for visualization of tabular data added to
namespace
- ‘ksmooth’ and ‘surface’ for surface estimation and visualization of
bivariate data and functions
- ‘dsort’: Sort data.frames
- general multivariate distributions in simulations. see example in
‘sim’
- ‘or2prob’, ‘tetrachoric’ for conversion from OR to probabilities
(and tetrachoric correlations). ‘prob.normal’: calculates probabilities
from threshold model given thresholds and variance See also mets:::assoc
for calculations of kappa, gamma, uncer.coef. ‘normal.threshold’:
returns thresholds,variance,mu from model with categorical
outcomes.
- Multiple testing routines: closed.testing, p.correct, …
- ‘Missing’ method updated with a simple ‘suffix’ argument
- Back-tracing updated in Newton-Raphson routine
lava 1.2.6
- New ‘stack’ function for two-stage estimation (via ‘estimate’
objects)
- New ‘blocksample’ function for resampling clustered data.
- New function ‘Missing’ to generate complex missing data
patterns
- Weibull parametrization of ‘coxWeibull.lvm’ rolled back (ver.
1.2.4). The function ‘weibull.lvm’ now leads to Accelerated Failure Time
model (see examples of ‘eventTime’)
- iid function cleanup (new ‘bread’ attribute). iid.glm now gives
correct estimated influence functions for ‘quasi’ link (constant
variance)
- Parameter constraints on (co)variance parameters now possible with
the syntax lvm(…,y~~a*x) (corresponding to
covariance(…,y~x)<-“a”)
- Some additional utilities: pdfconvert, scheffe, images, click.
confband updated with ‘polygon’ argument.
- New function getMplus: Import results from Mplus
- New function getSAS: Import SAS ODS
- New ‘edgecolor’ argument of plot-function
lava 1.2.5
- ‘merge’ method added for combining ‘estimate’ objects
- Adjustments to starting values
- Function ‘categorical’ for adding categorical predictors to
simulation model
- Improved flexibility in simulations with ‘transform’,‘constrain’
(ex: categorical predictors)
- Added ‘dataid’ argument to estimate.default allowing different id
for ‘data’ and i.i.d. decomposition of model parameter estimates. With
the argument ‘stack=FALSE’ influence functions within clusters will not
be stacked together.
- R-squared values (+ approximate standard errors/i.i.d.
decomposition) via ‘rsq(model,TRUE)’
- New infrastructure for adding additional parameters to models (no
user-visible changes).
- multinomial function for calculating influence curves for
multinomial probabilities. ‘gammagk’ and ‘kappa’ methods for calculating
Goodman-Kruskals gamma and Cohens kappa coefficients.
- ordreg function for univariate ordinal regression models
- iid methods for data.frames/matrices (empirical mean and
variance)
- Support for using ‘mets::cluster.index’ in GEE-type models (much
faster).
- plotConf updated (vcov argument added and more graphical arguments
parsed to plotting functions)
- Additional unit-tests implemented
- New ‘forestplot’ and ‘Combine’ functions
- Covariance structure may now be specified using ‘
’, e.g.
’lvm(c(y,v)z+u)’ specifies correlation between residuals of
(y,z),(y,u),(v,z),(v,u).
lava 1.2.4
- Avoid estimating IC in ‘estimate.default’ when ‘vcov’ argument is
given.
- New default starting values
- Time-varying effects via ‘timedep’
- R-squared added to summary
- alias: covariance->variance
- added size argument to binomial.lvm;
lava 1.2.3
- ‘subset’ argument added to estimate.default. Calculates empirical
averages conditional on subsets of data
- Improved output from compare/estimate functions
- Minor bug fixes (plot, predict)
- sim: Piecewise constant rates with coxEponential.lvm. New
aalenExponential.lvm function for additive models. Functions ones.lvm
and sequence.lvm for deterministic variables.
lava 1.2.2
- Regression parameters are now by default referenced using ‘~’,
e.g. “y~x” instead of “y<-x”. Applies to setting starting values in
‘estimate’, parameters in ‘sim’,‘compare’,‘estimate’,…. To use the old
syntax set ‘lava.options(symbol=c(“<-”,“<->”))’
- Newton-Raphson/scoring procedure updated
- Search-interval for profile likelihood CI improved (for variance
parameters)
- ‘estimate.default’ updated (LRT)
- ‘iid’ updated (variance now obtained as tensor product of the
result)
- progress bar for ‘bootstrap’ and ‘modelsearch’
- various minor bug fixes
- new functions: Expand (expand.grid wrapper), By (by wrapper)
lava 1.2.1
- Optimization + minor bug fixes
lava 1.2.0
- New method ‘iid’ for extracting i.i.d. decomposition (influence
functions) from model objects (e.g. glm, lvm, …)
- Method ‘estimate’ can now be used on model objects to transform
parameters (Delta method) or conduct Wald tests. Average effects,
i.e. averaging functionals over the empirical distribution is also
possible including calculation of standard errors.
- ‘curereg’ function for estimating mixtures of binary data.
- Instrumental Variable (IV) estimator (two-stage least-squares)
optimized.
- New distributions: Gamma.lvm, coxWeibull.lvm, coxExponential.lvm,
coxGompertz.lvm. New method ‘eventTime’ (for simulation of competing
risks data)