The mission of hablar
is for you to get non-astonishing
results! That means that functions return what you expected. R has some
intuitive quirks that beginners and experienced programmers fail to
identify. Some of the first weird features of R that hablar
solves:
Missing values NA
and irrational values
Inf
, NaN
is dominant. For example, in R
sum(c(1, 2, NA))
is NA
and not 3. In
hablar
the addition of an underscore
sum_(c(1, 2, NA))
returns 3, as is often expected.
Factors (categorical variables) that are converted to numeric
returns the number of the category rather than the value. In
hablar
the convert()
function always changes
the type of the values.
Finding duplicates, and rows with NA
can be
cumbersome. The functions find_duplicates()
and
find_na()
make it easy to find where the data frame needs
to be fixed. When the issues are found the utility replacement
functions, e.g. if_else_()
, if_na()
,
zero_if()
easily fixes many of the most common problems you
face.
hablar
follows the syntax API of tidyverse
and works seamlessly with dplyr
and
tidyselect
.
You can install hablar
from CRAN:
install.packages("hablar")
Or preferably:
if (!require("pacman")) install.packages("pacman")
::p_load(tidyverse, hablar) pacman
The most useful function of hablar
is maybe convert.
convert helps the user to quickly and dynamically change data type of
columns in a data frame. convert always converts factors to character
before further conversion. Works with tidyselect
.
%>%
mtcars convert(int(cyl, am),
fct(disp:drat),
chr(contains("w")))
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <int> <fct> <fct> <fct> <chr> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.875 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.4 1 0 3 1
#> # ... with 28 more rows
For more information type vignette("convert")
in the
console.
Often summary function like min, max and mean return surprising
results. Combining _
with your summary function ensures you
that you will get a result, if there is one in your data. It ignores
irrational numbers like Inf
and NaN
as well as
NA
. If all elements are NA, Inf, NaN
it
returns NA.
%>%
starwars summarise(min_height_baseR = min(height),
min_height_hablar = min_(height))
#> # A tibble: 1 x 2
#> min_height_baseR min_height_hablar
#> <int> <int>
#> 1 NA 66
The function min_
omitted that the variable
height
contained NA
. For more information type
vignette("s")
in the console.
When cleaning data you spend a lot of time understanding your data.
Sometimes you get more row than you expected when doing a
left_join()
. Or you did not know that certain column
contained missing values NA
or irrational values like
Inf
or NaN
.
In hablar
the find_*
functions speeds up
your search for the problem. To find duplicated rows you simply
df %>% find_duplicates()
. You can also find duplicates
in in specific columns, which can be useful before joins.
# Create df with duplicates
<- mtcars %>%
df bind_rows(mtcars %>% slice(1, 5, 9))
# Return rows with duplicates in cyl and am
%>%
df find_duplicates(cyl, am)
#> # A tibble: 35 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> # ... with 31 more rows
There are also find functions for other cases. For example
find_na()
returns rows with missing values.
%>%
starwars find_na(height)
#> # A tibble: 6 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Arvel C~ NA NA brown fair brown NA male mascul~
#> 2 Finn NA NA black dark dark NA male mascul~
#> 3 Rey NA NA brown light hazel NA fema~ femini~
#> 4 Poe Dam~ NA NA brown light brown NA male mascul~
#> # ... with 2 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
If you rather want a Boolean value instead then
e.g. check_duplicates()
returns TRUE
if the
data frame contains duplicates, otherwise it returns
FALSE
.
Let’s say that we have found a problem is caused by missing values in
the column height
and you want to replace all missing
values with the integer 100. hablar
comes with an
additional ways of doing if-or-else.
%>%
starwars find_na(height) %>%
mutate(height = if_na(height, 100L))
#> # A tibble: 6 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Arvel C~ 100 NA brown fair brown NA male mascul~
#> 2 Finn 100 NA black dark dark NA male mascul~
#> 3 Rey 100 NA brown light hazel NA fema~ femini~
#> 4 Poe Dam~ 100 NA brown light brown NA male mascul~
#> # ... with 2 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
In the chunk above we successfully replaced all missing heights with
the integer 100. hablar
also contain the self
explained:
if_zero()
and zero_if()
if_inf()
and inf_if()
if_nan()
and nan_if()
which works in the same way as the examples above.
A function for quick and dirty data type conversion. All columns are evaluated and converted to the simplest possible without loosing any information.
%>% retype() mtcars
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> # ... with 28 more rows
All variables with only integer were converted to type integer. For
more information type vignette("retype")
in the
console.
Hablar means ‘speak R’ in Spanish.