h2o: R Interface for the 'H2O' Scalable Machine Learning Platform

R interface for 'H2O', the scalable open source machine learning platform that offers parallelized implementations of many supervised and unsupervised machine learning algorithms such as Generalized Linear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes, Generalized Additive Models (GAM), ANOVA GLM, Cox Proportional Hazards, K-Means, PCA, ModelSelection, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).

Version: 3.44.0.3
Depends: R (≥ 2.13.0), methods, stats
Imports: graphics, tools, utils, RCurl, jsonlite
Suggests: ggplot2 (≥ 3.3.0), mlbench, Matrix, slam, bit64 (≥ 0.9.7), data.table (≥ 1.9.8), rgl (≥ 0.100.19), plot3Drgl (≥ 1.0.1), survival, DT, IRdisplay, htmltools, plotly, repr, curl, scales
Published: 2024-01-11
DOI: 10.32614/CRAN.package.h2o
Author: Tomas Fryda [aut, cre], Erin LeDell [aut], Navdeep Gill [aut], Spencer Aiello [aut], Anqi Fu [aut], Arno Candel [aut], Cliff Click [aut], Tom Kraljevic [aut], Tomas Nykodym [aut], Patrick Aboyoun [aut], Michal Kurka [aut], Michal Malohlava [aut], Sebastien Poirier [aut], Wendy Wong [aut], Ludi Rehak [ctb], Eric Eckstrand [ctb], Brandon Hill [ctb], Sebastian Vidrio [ctb], Surekha Jadhawani [ctb], Amy Wang [ctb], Raymond Peck [ctb], Jan Gorecki [ctb], Matt Dowle [ctb], Yuan Tang [ctb], Lauren DiPerna [ctb], Veronika Maurerova [ctb], Yuliia Syzon [ctb], Adam Valenta [ctb], Marek Novotny [ctb], H2O.ai [cph, fnd]
Maintainer: Tomas Fryda <tomas.fryda at h2o.ai>
BugReports: https://github.com/h2oai/h2o-3/issues
License: Apache License (== 2.0)
URL: https://github.com/h2oai/h2o-3
NeedsCompilation: no
SystemRequirements: Java (>= 8, <= 17)
Materials: NEWS
In views: HighPerformanceComputing, MachineLearning, ModelDeployment
CRAN checks: h2o results [issues need fixing before 2025-02-04]

Documentation:

Reference manual: h2o.pdf

Downloads:

Package source: h2o_3.44.0.3.tar.gz
Windows binaries: r-devel: h2o_3.44.0.3.zip, r-release: h2o_3.44.0.3.zip, r-oldrel: h2o_3.44.0.3.zip
macOS binaries: r-release (arm64): h2o_3.44.0.3.tgz, r-oldrel (arm64): h2o_3.44.0.3.tgz, r-release (x86_64): h2o_3.44.0.3.tgz, r-oldrel (x86_64): h2o_3.44.0.3.tgz
Old sources: h2o archive

Reverse dependencies:

Reverse imports: agua, autoEnsemble, h2otools, healthyR.ai, lazytrade, lilikoi, mlim, rsparkling, shapley, shinyML
Reverse suggests: bundle, DALEXtra, flowml, iForecast, iml, lares, lareshiny, lime, localICE, mlflow, mlr, NeuralSens, pheble, stacks
Reverse enhances: effectplots, shapviz, texreg, vip

Linking:

Please use the canonical form https://CRAN.R-project.org/package=h2o to link to this page.