## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # Define the input distribution parameters mx <- c(1, 1, 1) Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3) # Define the number of samples N <- 1000 # Set the random number generator seed for reproducibility set.seed(777) # Sample from standard normals x1 <- rnorm(N) x2 <- rnorm(N) x3 <- rnorm(N) # Transform the standard normals into the required distribution x <- cbind(x1, x2, x3) x <- mx + x %*% chol(Sigmax) # Define the model (matrix with coefficients) A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE) # Generate the output y <- t(A %*% t(x)) colnames(y) <- c("y1", "y2") ## ----fig.width=4, fig.height=4------------------------------------------------ library(ggplot2) library(patchwork) # Set the theme theme_set(theme_minimal()) # Prepare the marginal and the 2D density plots p1 <- ggplot(as.data.frame(y), aes(x = y1, y = y2)) + geom_point(color = "black") + geom_density_2d() p2 <- ggplot(as.data.frame(y), aes(x = y1)) + geom_density() p3 <- ggplot(as.data.frame(y), aes(x = y2)) + geom_density() + coord_flip() p2 + plot_spacer() + p1 + p3 + plot_layout(ncol = 2, nrow = 2, widths = c(4, 1), heights = c(1, 4), axes = "collect") ## ----------------------------------------------------------------------------- library(gsaot) M <- 25 indices_wb <- ot_indices_wb(x, y, M) indices_wb ## ----fig.width=6, fig.height=4------------------------------------------------ plot(indices_wb) ## ----fig.width=6, fig.height=4------------------------------------------------ # Enable bootstrap boot <- TRUE # Set the number of replicas R <- 100 # Define the confidence level conf <- 0.99 # Define the type of confidence interval type <- "norm" # Compute the indices indices_wb <- ot_indices_wb(x, y, M, boot = boot, R = R, conf = conf, type = type) plot(indices_wb)