Forest-based statistical estimation and inference.
  GRF provides non-parametric methods for heterogeneous treatment effects estimation
  (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables),
  as well as least-squares regression, quantile regression, and survival regression,
  all with support for missing covariates.
| Version: | 
2.5.0 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
DiceKriging, lmtest, Matrix, methods, Rcpp (≥ 0.12.15), sandwich (≥ 2.4-0) | 
| LinkingTo: | 
Rcpp, RcppEigen | 
| Suggests: | 
DiagrammeR, MASS, rdrobust, survival (≥ 3.2-8), testthat (≥
3.0.4) | 
| Published: | 
2025-10-09 | 
| DOI: | 
10.32614/CRAN.package.grf | 
| Author: | 
Julie Tibshirani [aut],
  Susan Athey [aut],
  Rina Friedberg [ctb],
  Vitor Hadad [ctb],
  David Hirshberg [ctb],
  Luke Miner [ctb],
  Erik Sverdrup [aut, cre],
  Stefan Wager [aut],
  Marvin Wright [ctb] | 
| Maintainer: | 
Erik Sverdrup  <erik.sverdrup at monash.edu> | 
| BugReports: | 
https://github.com/grf-labs/grf/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/grf-labs/grf | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
GNU make | 
| In views: | 
CausalInference, Econometrics, MachineLearning, MissingData | 
| CRAN checks: | 
grf results |