--- title: "Package Outline" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Package Outline} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Scenario simulation The objective of this vignette is to walk through a few steps needed to create and simulate a baseline scenario. To explore all the possibilities for simulating various models with Godley, please refer to other, more detailed articles on [this website](https://gamrot.github.io/godley/) that focus on specific models. ### 1. Model creation Use the `create_model()` function to initialize an SFC model (SFC object): ```{r} library(godley) model_sim <- create_model(name = "SFC model") ``` **Arguments:** - `name`: Model name (required). - `template`: Name of a model template to upload (optional). *Note:* Users can skip manually adding variables and equations (steps 2 and 3 below) by uploading model attributes from pre-defined templates included in the package. Available templates include: `SIM`, `SIMEX`, `PC`, `LP`, `REG`, `OPEN`, `BMW`, `BMWK`, `DIS`, and `DISINF`. ### 2. Adding variables Add variables to the model using the `add_variable()` function. It incorporates variables by creating new entries in the SFC tibble: ```{r} # Add parameters model_sim <- add_variable(model = model_sim, name = "C_d", desc = "Consumption demand by households") model_sim <- add_variable(model = model_sim, name = "C_s", desc = "Consumption supply") model_sim <- add_variable(model = model_sim, name = "G_s", desc = "Government supply") model_sim <- add_variable(model = model_sim, name = "H_h", desc = "Cash money held by households") model_sim <- add_variable( model = model_sim, name = "H_s", desc = "Cash money supplied by the government" ) model_sim <- add_variable(model = model_sim, name = "N_d", desc = "Demand for labor") model_sim <- add_variable(model = model_sim, name = "N_s", desc = "Supply of labor") model_sim <- add_variable(model = model_sim, name = "T_d", desc = "Taxes, demand") model_sim <- add_variable(model = model_sim, name = "T_s", desc = "Taxes, supply") model_sim <- add_variable(model = model_sim, name = "Y", desc = "Income = GDP") model_sim <- add_variable(model = model_sim, name = "Yd", desc = "Disposable income of households") model_sim <- add_variable( model = model_sim, name = "alpha1", init = 0.6, desc = "Propensity to consume out of income" ) model_sim <- add_variable( model = model_sim, name = "alpha2", init = 0.4, desc = "Propensity to consume out of wealth" ) model_sim <- add_variable(model = model_sim, name = "theta", init = 0.2, desc = "Tax rate") model_sim <- add_variable(model = model_sim, name = "G_d", init = 20, desc = "Government demand") model_sim <- add_variable(model = model_sim, name = "W", init = 1, desc = "Wage rate") ``` **Arguments:** - `model`: The name of the model (required). - `name`: The name of the variable (required). - `init`: The initial value of the variable (optional). - `desc`: A description of the variable (optional). ### 3. Adding equations Add equations to the SFC model using the `add_equation()` function. This also creates new entries in the SFC tibble. ```{r} # Add equations model_sim <- add_equation(model = model_sim, equation = "C_s = C_d", desc = "Consumption") model_sim <- add_equation(model = model_sim, equation = "G_s = G_d") model_sim <- add_equation(model = model_sim, equation = "T_s = T_d") model_sim <- add_equation(model = model_sim, equation = "N_s = N_d") model_sim <- add_equation(model = model_sim, equation = "Yd = W * N_s - T_s") model_sim <- add_equation(model = model_sim, equation = "T_d = theta * W * N_s") model_sim <- add_equation(model = model_sim, equation = "C_d = alpha1 * Yd + alpha2 * H_h[-1]") model_sim <- add_equation(model = model_sim, equation = "H_s = G_d - T_d + H_s[-1]") model_sim <- add_equation(model = model_sim, equation = "H_h = Yd - C_d + H_h[-1]") model_sim <- add_equation(model = model_sim, equation = "Y = C_s + G_s") model_sim <- add_equation(model = model_sim, equation = "N_d = Y/W") model_sim <- add_equation( model = model_sim, equation = "H_s = H_h", desc = "Money equilibrium", hidden = TRUE ) ``` **Arguments:** - `model`: The name of the model (required). - `equation`: The formula for the equation (required). - `desc`: A description of the equation (optional). - `hidden`: A boolean indicating whether the equation should be hidden (optional). Hidden equations are excluded from simulation. ### 4. Altering initial values (optional) If you want to modify the initial values of parameters, simply apply the `change_init()` function: ```{r} # Change initial value for alpha1 parameter model_sim <- change_init(model = model_sim, name = "alpha1", value = 0.5) ``` **Arguments:** - `model`: The name of the model (required). - `name`: The name of the parameter (required). - `value`: The new initial value for the parameter (required). ### 5. Simulating scenario(s) Now, you can simulate the specified scenarios by running the `simulate_scenario()` function: ```{r} # Simulate baseline scenario model_sim <- simulate_scenario( model = model_sim, scenario = "baseline", max_iter = 350, periods = 100, hidden_tol = 0.1, tol = 1e-08, method = "Gauss" ) ``` **Arguments:** - `model`: The name of the SFC model (required). - `scenario`: The name of the scenario to be simulated (optional). - `max_iter`: The maximum number of iterations for the simulation (optional). - `periods`: The number of simulation periods (optional). - `hidden_tol`: The maximum allowable error for hidden equations (optional). - `tol`: The maximum allowable error for the algorithm to converge during the simulation (optional). - `method`: The calculation method to be used (`'Newton'` or `'Gauss'`) (optional). *Note*: If scenario name is not provided all not simulated scenarios will be calculated. ## Model — plots Finally, to visualize the model simulation, use the `plot_simulation()` function: ```{r, out.width="100%"} # Plot results plot_simulation( model = model_sim, scenario = "baseline", from = 1, to = 100, expressions = c("Y", "C_s / alpha1") ) ``` **Arguments:** - `model`: The name of the SFC model to be displayed on the chart (required). - `scenario`: The name of the scenario(s) to include on the chart (optional). - `take_all`: A boolean indicating whether all scenarios containing the specified scenario name strings should be displayed on the chart (optional). - `from`: The starting period to be displayed on the chart (optional). - `to`: The ending period to be displayed on the chart (optional). - `expressions`: The variable names or equations to visualize on the chart (optional). For a broader view of the model's structure, use `plot_cycles()` to see how variables are interconnected. It helps you see how the variables are interconnected and may reveal any loops, like feedback mechanisms or endogeneity. ```{r, out.width="100%"} # Plot relationships plot_cycles(model = model_sim) ``` **Arguments:** - `model`: The SFC model object generated using the `create_model()` function. - `save_file`: The file name and path where the plot will be saved as an HTML file. ## Model — simulating shock(s) Beyond the baseline scenario, you can explore how market disruptions affect the economy. To simulate a shock scenario, follow these steps: ### 1. Creating shock object Initialize a SFC shock tibble object using `create_shock()`: ```{r} # Create shock sim_shock <- create_shock() ``` ### 2. Adding shock equations Use `add_shock()` to define the shock equations: ```{r} # Add shock equation for increased government expenditures sim_shock <- add_shock( shock = sim_shock, variable = "G_d", value = 25, desc = "Increase in government expenditures", start = 5, end = 10 ) ``` **Arguments:** - `shock`: The name of the shock object where the new equation will be added (required). - `equation`: The (new) equation describing the applied shock (required). - `desc`: A description of the applied shock (optional). - `start`: The initial period when the shock will be applied (optional). - `end`: The final period during which the shock will be applied (optional). *Note*: 'start' and 'end' parameters are set by default to NA, so by default the shock will be applied to the whole simulation period ### 3. Adding shock scenario to the SFC model Integrate the shock into your model using `add_scenario()`: ```{r} # Add shock scenario for increased government expenditures model_sim <- add_scenario( model = model_sim, name = "expansion", origin = "baseline", origin_start = 1, origin_end = 100, shock = sim_shock ) ``` **Arguments:** - `model`: The name of the model to which the new scenario will be added (required). - `name`: The name of the new scenario (optional). - `origin`: The name of the baseline scenario to use as a reference (optional). - `origin_start`: The period from the baseline scenario to be used as the initial period in the new scenario (optional). - `origin_end`: The period from the baseline scenario to be used as the final period in the new scenario (optional). - `shock`: The name of the created SFC shock object to be applied (required). ### 4. Simulating shock scenario Run the simulation for the shock scenario: ```{r} # Calculate shock scenario for increased government expenditures model_sim <- simulate_scenario( model = model_sim, max_iter = 350, periods = 100, hidden_tol = 0.1, tol = 1e-08, method = "Gauss" ) ``` ## Model — sensitivity analysis For a more comprehensive view, you can carry out sensitivity analysis. Sensitivity analysis allows the creation of multiple scenarios in a separate SFC model by modifying the initial value of a selected variable. To perform sensitivity analysis, use `create_sensitivity()` and `simulate_scenario()`: ```{r} # Create and calculate sensitivity model_sen <- create_sensitivity( model_pass = model_sim, variable = "alpha1", lower = 0.1, upper = 0.8, step = 0.1 ) model_sen <- simulate_scenario( model = model_sen, max_iter = 350, periods = 100, hidden_tol = 0.1, tol = 1e-08, method = "Gauss" ) ``` **Arguments:** - `model_pass`: The name of the SFC model or scenario template to be used for the sensitivity calculation (required). - `variable`: The name of the variable to be analyzed in the sensitivity calculation (required). - `lower`: The minimum value of the variable for the sensitivity calculation (optional). - `upper`: The maximum value of the variable for the sensitivity calculation (optional). - `step`: The increment by which the variable will change during the sensitivity analysis (optional).