## ----global options, include = FALSE------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_knit$set(root.dir = tempdir()) ## ----setup-------------------------------------------------------------------- library(gcplyr) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- sim_dat_tdy <- make_example(vignette = 8, example = 1) ## ----------------------------------------------------------------------------- sim_dat_tdy <- mutate(group_by(sim_dat_tdy, Well), percap_deriv = calc_deriv(y = Measurements, x = time, percapita = TRUE, blank = 0)) # Plot the growth in our wells ggplot(data = filter(sim_dat_tdy, Well != "averaged"), aes(x = time, y = Measurements, group = Well)) + geom_line(alpha = 0.1) + geom_line(data = filter(sim_dat_tdy, Well == "averaged"), color = "red") + scale_y_continuous(trans = "log10") ## ----------------------------------------------------------------------------- # Summarize our data sim_dat_sum <- summarize(group_by(sim_dat_tdy, Well), max_growth_rate = max(percap_deriv, na.rm = TRUE)) # Plot the maximum per-capita growth rates of each well # as well as the 'average' well ggplot(data = sim_dat_sum, aes(x = Well == "averaged", y = max_growth_rate)) + geom_point(alpha = 0.5, position = position_jitter(width = 0.1)) + ylim(0.01, 0.03) ## ----------------------------------------------------------------------------- # This code was previously explained # Here we're re-running it so it's available for us to work with example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless, id_cols = "Time") ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy) ex_dat_mrg_sum <- summarize(group_by(dplyr::filter(ex_dat_mrg, Phage == "No Phage"), Well, Bacteria_strain, Phage), auc = auc(x = Time, y = Measurements)) ## ----------------------------------------------------------------------------- antibiotic_dat <- make_example(vignette = 8, example = 2) head(antibiotic_dat) ## ----------------------------------------------------------------------------- growth_and_antibiotics <- merge_dfs(ex_dat_mrg_sum, antibiotic_dat) head(growth_and_antibiotics) ggplot(data = growth_and_antibiotics, aes(x = Antibiotic_resis, y = auc)) + geom_point()