Package ‘gRim’

October 2, 2023

Version 0.3.0

Title Graphical Interaction Models

Author Sgren Hgjsgaard <sorenh@math.aau.dk>
Maintainer Sgren Hgjsgaard <sorenh@math.aau.dk>

Description Provides the following types of models: Models for contingency
tables (i.e. log-linear models) Graphical Gaussian models for multivariate
normal data (i.e. covariance selection models) Mixed interaction models.
Documentation about 'gRim' is provided by vignettes included in this
package and the book by Hgjsgaard, Edwards and Lauritzen (2012,
<doi:10.1007/978-1-4614-2299-0>); see 'citation(""gRim")" for details.

License GPL (>=2)

URL https://people.math.aau.dk/~sorenh/software/gR/
Encoding UTF-8

Depends R (>= 3.6.0), methods, gRbase (>=2.0.0)

Suggests testthat (>=2.1.0)

Imports igraph, stats4, gRain (>= 1.3.10), magrittr, Repp (>=0.11.1)
ByteCompile yes

LinkingTo Rcpp (>=0.11.1), ReppArmadillo, RcppEigen, gRbase (>=
2.0.0)

RoxygenNote 7.2.3

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-10-02 03:50:02 UTC

R topics documented:

CE-SEALS . o o o e
CIESL-AITAY o o v e i i et e e e e e e
citest-df . . . L L L
CItESt-ZENEIIC o v it e e e e

https://doi.org/10.1007/978-1-4614-2299-0
https://people.math.aau.dk/~sorenh/software/gR/

2 cg-stats
CIESE-MIVIL o ot e e e e 8
citest-ordinal 9
emod .. oL e e e e e e 10
getEBdges L e 12
gemifit 14
imodel-dmod L 15
imodel-general L. 17
imodel-info e e e 18
imodel-mmod e e e 18
internal 19
loglin-dim e e e e 19
loglin-effloglin e 20
modify_glist e 22
PArM-CONVETSION . . .« . v v v v e bt e et e e e e e e e 23
parse_gm_formulao 24
SEEPWISE . o v v v e e e e e e e e e e e e e 25
tesSt-8dZeS e e e 27
testadd L e e e e e 29
testdelete L. L e e e e e e 30

Index 32

cg-stats Mean, covariance and counts for grouped data (statistics for condi-
tional Gaussian distribution).

Description

CGstats provides what corresponds to calling cow.wt on different strata of data where the strata
are defined by the combinations of factors in data.

Usage

CGstats(object, varnames = NULL, homogeneous = TRUE, simplify = TRUE)

Arguments
object A dataframe.
varnames Names of variables to be used.
homogeneous Logical; if TRUE a common covariance matrix is reported.
simplify Logical; if TRUE the result will be presented in a simpler form.
Value

A list whose form depends on the type of input data and the varnames.

citest-array

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

cov.wt

Examples

data(milkcomp)

milkcomp <- subset(milkcomp, (treat %in% c("a"”, "b")) & (lactime %in% c("t1", "t2")))
milkcomp <- milkcomp[,-1]

milkcomp$treat

milkcomp$lactime

CGstats(milkcomp)
CGstats(milkcomp,
CGstats(milkcomp,
CGstats(milkcomp,
CGstats(milkcomp,

CGstats(milkcomp,
CGstats(milkcomp,
CGstats(milkcomp,

<- factor(milkcomp$treat)
<- factor(milkcomp$lactime)

c(1, 2))

c("lactime”, "treat"))
c(3, 4))

c("fat”, "protein™))

c(2, 3, 4), simplify=FALSE)
c(2, 3, 4), homogeneous=FALSE)
c(2, 3, 4), simplify=FALSE, homogeneous=FALSE)

citest-array

Test for conditional independence in a contingency table

Description

Test for conditional independence in a contingency table represented as an array.

Usage

ciTest_table(
X’
set = NULL,

statistic = "dev”,
method = "chisq",
adjust.df = TRUE,
slice.info = TRUE,

L = 20,
B = 200,

Arguments

X

set

statistic

method

adjust.df
slice.info
L

Details

citest-array

An array of counts with named dimnames.

A specification of the test to be made. The tests are of the form u and v are
independent condionally on S where u and v are variables and S is a set of
variables. See ’details’ for details about specification of set.

Possible choices of the test statistic are "dev” for deviance and "X2" for Pear-
sons X2 statistic.

Method of evaluating the test statistic. Possible choices are "chisq”, "mc" (for
Monte Carlo) and "smc” for sequential Monte Carlo.

Logical. Should degrees of freedom be adjusted for sparsity?

Logical. Should slice info be stored in the output?

Number of extreme cases as stop criterion if method is "smc” (sequential Monte
Carlo test); ignored otherwise.

Number (maximum) of simulations to make if method is "mc” or "smc” (Monte
Carlo test or sequential Monte Carlo test); ignored otherwise.

Additional arguments.

set can be 1) a vector or 2) a right-hand sided formula in which variables are separated by *+’. In
either case, it is tested if the first two variables in the set are conditionally independent given the
remaining variables in set. (Notice an abuse of the +’ operator in the right-hand sided formula:
The order of the variables does matter.)

If set is NULL then it is tested whether the first two variables are conditionally independent given
the remaining variables.

Value

An object of class citest (which is a list).

Author(s)

Sgren Hgjsgaard, <sorenh@math. aau.dk>

See Also

ciTest, ciTest_df, ciTest_mvn, chisq. test

Examples

data(lizard)

lizard is has named dimnames
names(dimnames(lizard))

checked with

is.named.array(lizard)

citest-df 5

Testing for conditional independence:

the following are all equivalent:

ciTest(lizard, set=~diam + height + species)

ciTest(lizard, set=c(”diam”, "height"”, "species"))

ciTest(lizard, set=1:3)

ciTest(lizard)

(The latter because the names in lizard are as given above.)

Testing for marginal independence
ciTest(lizard, set=~diam + height)
ciTest(lizard, set=1:2)

Getting slice information:
ciTest(lizard, set=c("diam”, "height"”, "species"), slice.info=TRUE)$slice

Do Monte Carlo test instead of usual likelihood ratio test. Different
options:

1) Do B*10 simulations divided equally over each slice:

ciTest(lizard, set=c("diam”, "height"”, "species”), method="mc", B=400)

2) Do at most Bx10 simulations divided equally over each slice, but stop
when at most L extreme values are found

ciTest(lizard, set=c("diam”, "height"”, "species”), method="smc", B=400)

citest-df Test for conditional independence in a dataframe

Description

Test for conditional independence in a dataframe.

Usage
ciTest_df(x, set = NULL, ...)
Arguments
X A dataframe.
set A specification of the test to be made. The tests are of the form u and v are
independent condionally on S where u and v are variables and S is a set of
variables. See ’details’ for details about specification of set.
Additional arguments.
Details

* set can be 1) a vector or 2) a right-hand sided formula in which variables are separated by
’+’. In either case, it is tested if the first two variables in the set are conditionally independent
given the remaining variables in set. (Notice an abuse of the ’+’ operator in the right-hand
sided formula: The order of the variables does matter.)

6 citest-generic

e If set is NULL then it is tested whether the first two variables are conditionally independent
given the remaining variables.

* If set consists only of factors then x[, set] is converted to a contingency table and the test is
made in this table using ciTest_table().

o If set consists only of numeric values and integers then x[, set] is converted to a list with
components cov and n.obs by calling cov.wt(x[,set], method="ML"). This list is then
passed on to ciTest_mvn() which makes the test.

Value

An object of class citest (which is a list).

Author(s)

S¢ren Hgjsgaard, <sorenh@math.aau.dk>

See Also

ciTest, ciTest_table, ciTest_mvn, chisq.test
Examples

data(milkcomp1)
ciTest(milkcompl, set=~tre + fat + pro)
ciTest_df (milkcompl, set=~tre + fat + pro)

citest-generic Generic function for conditional independence test

Description

Generic function for conditional independence test. Specializes to specific types of data.

Usage
ciTest(x, set = NULL, ...)
Arguments
X An object for which a test for conditional independence is to be made. See
“details’ for valid types of x.
set A specification of the test to be made. The tests are of the form u and v are

independent condionally on S where u and v are variables and S is a set of
variables. See ’details’ for details about specification of set.

Additional arguments to be passed on to other methods.

citest-generic 7

Details

X can be

1. atable (an array). In this case ciTest_table is called.
2. a dataframe whose columns are numerics and factors. In this case ciTest_df is called.

3. alist with components cov and n.obs. In this case ciTest_mvn is called.
set can be

1. a vector,

2. aright-hand sided formula in which variables are separated by +’.

In either case, it is tested if the first two variables in the set are conditionally independent given the
remaining variables in set. (Notice an abuse of the +’ operator in the right-hand sided formula:
The order of the variables does matter.)

Value

An object of class citest (which is a list).

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

ciTest_table, ciTest_df, ciTest_mvn, chisq.test

Examples

contingency table:

data(reinis)

dataframe with only numeric variables:
data(carcass)

dataframe with numeric variables and factors:
data(milkcomp1)

ciTest(cov.wt(carcass, method='ML'), set=~Fat11 + Meatll + Fat12)
ciTest(reinis, set=~smo + phy + sys)
ciTest(milkcompl, set=~tre + fat + pro)

8 citest-mvn

citest-mvn Test for conditional independence in the multivariate normal distribu-
tion

Description

Test for conditional independence in the multivariate normal distribution.

Usage
ciTest_mvn(x, set = NULL, statistic = "DEV", ...)
Arguments
X A list with elements cov and n.obs (such as returned from calling cov.wt () on
a dataframe. See examples below.)
set A specification of the test to be made. The tests are of the form u and v are
independent condionally on S where u and v are variables and S is a set of
variables. See ’details’ for details about specification of set.
statistic The test statistic to be used, valid choices are "DEV"” and "F".
Additional arguments
Details

set can be 1) a vector or 2) a right-hand sided formula in which variables are separated by *+’. In
either case, it is tested if the first two variables in the set are conditionally independent given the
remaining variables in set. (Notice an abuse of the '+’ operator in the right-hand sided formula:
The order of the variables does matter.)

If set is NULL then it is tested whether the first two variables are conditionally independent given
the remaining variables.

x must be a list with components cov and n. obs such as returned by calling cov.wt(, method="'ML")
on a dataframe.

Value

An object of class citest (which is a list).

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

ciTest, ciTest_table, ciTest_df, ciTest_mvn, chisq. test

citest-ordinal 9

Examples

data(carcass)
ciTest(cov.wt(carcass, method='ML'), set=~Fatll + Meatl11 + Fat12)
ciTest_mvn(cov.wt(carcass, method='ML'), set=~Fat11l + Meatl11 + Fat12)

citest-ordinal A function to compute Monte Carlo and asymptotic tests of conditional
independence for ordinal and/or nominal variables.

Description

The function computes tests of independence of two variables, say u and v, given a set of vari-
ables, say S. The deviance, Wilcoxon, Kruskal-Wallis and Jonkheere-Terpstra tests are supported.
Asymptotic and Monte Carlo p-values are computed.

Usage
ciTest_ordinal(x, set = NULL, statistic = "dev", N=10, ...)
Arguments
X A dataframe or table.
set The variable set (u,v,S), given either as an integer vector of the column numbers
of a dataframe or dimension numbers of a table, or as a character vector with the
corresponding variable or dimension names.
statistic Either "deviance", "wilcoxon", "kruskal" or "jt".
N The number of Monte Carlo samples. If N<=0 then Monte Carlo p-values are
not computed.
Additional arguments, currently not used
Details

The deviance test is appropriate when u and v are nominal; Wilcoxon, when u is binary and v is
ordinal; Kruskal-Wallis, when u is nominal and v is ordinal; Jonckheere-Terpstra, when both u and
v are ordinal.

Value

A list including the test statistic, the asymptotic p-value and, when computed, the Monte Carlo
p-value.

P Asymptotic p-value

montecarlo.P Monte Carlo p-value

10 cmod

Author(s)

Flaminia Musella, David Edwards, Sgren Hgjsgaard, <sorenh@math.aau.dk>

References

See Edwards D. (2000), "Introduction to Graphical Modelling", 2nd ed., Springer-Verlag, pp. 130-
153.

See Also

ciTest_table, ciTest
Examples

library(gRim)
data(dumping, package="gRbase")

ciTest_ordinal (dumping, c(2,1,3), stat="jt", N=1000)
ciTest_ordinal(dumping, c("Operation”, "Symptom”, "Centre"), stat="jt"”, N=1000)
ciTest_ordinal(dumping, ~Operation + Symptom + Centre, stat="jt", N=1000)

data(reinis)
ciTest_ordinal(reinis, c(1,3,4:6), N=1000)

If data is a dataframe

dd <- as.data.frame(dumping)

ncells <- prod(dim(dumping))

ff <- dd$Freq

idx <- unlist(mapply(function(i,n) rep(i,n),1:ncells,ff))
dumpDF <- dd[idx, 1:3]

rownames (dumpDF) <- 1:NROW(dumpDF)

ciTest_ordinal(dumpDF, c(2,1,3), stat="jt", N=1000)
ciTest_ordinal(dumpDF, c("Operation”,"”Symptom”,"Centre”), stat="jt"”, N=1000)
ciTest_ordinal(dumpDF, ~ Operation + Symptom + Centre, stat="jt", N=1000)

cmod Graphical Gaussian model

Description

Specification of graphical Gaussian model. The ’c’ in the name cmod refers to that it is a (graphical)
model for ’c’ontinuous variables

Usage

cmod(formula, data, marginal = NULL, fit = TRUE, details = 0)

cmod 11

Arguments
formula Model specification in one of the following forms: 1) a right-hand sided for-
mula, 2) as a list of generators. Notice that there are certain model specification
shortcuts, see Section ’details’ below.
data Data in one of the following forms: 1) A dataframe or 2) a list with elements
cov and n.obs (such as returned by the cov.wt() function.)
marginal Should only a subset of the variables be used in connection with the model
specification shortcuts.
fit Should the model be fitted.
details Control the amount of output; for debugging purposes.
Details

The independence model can be specified as ~.*1 and the saturated model as ~.*.. The marginal
argument can be used for specifying the independence or saturated models for only a subset of the
variables.

Value

An object of class cModel (a list)

Author(s)

S¢ren Hgjsgaard, <sorenh@math.aau.dk>

See Also

dmod, mmod, ggmfit
Examples

Graphical Gaussian model
data(carcass)
cml <- cmod(~ .*., data=carcass)

Stepwise selection based on BIC
cm2 <- backward(cml, k=log(nrow(carcass)))

Stepwise selection with fixed edges

cm3 <- backward(cml, k=log(nrow(carcass)),

fixin=matrix(c("LeanMeat"”, "Meatl11”, "Meat12", "Meat13",
"LeanMeat”, "Fat11"”, "Fat12"”, "Fat13"),
ncol=2))

12 getEdges

getEdges Find edges in a graph or edges not in an undirected graph.

Description

Returns the edges of a graph (or edges not in a graph) where the graph can be either an igraph
object, a list of generators or an adjacency matrix.

Usage
getEdges(object, type = "unrestricted”, ingraph = TRUE, discrete = NULL, ...)
Arguments
object An object representing a graph; either a generator list, an igraph object or an
adjacency matrix.
type Either "unrestricted" or "decomposable"
ingraph If TRUE the result is the edges in the graph; if FALSE the result is the edges not
in the graph.
discrete This argument is relevant only if object specifies a marked graph in which some
vertices represent discrete variables and some represent continuous variables.
Additional arguments; currently not used.
Details

When ingraph=TRUE: If type="decomposable" then getEdges() returns those edges e for which
the graph with e removed is decomposable.

When ingraph=FALSE: Likewise, if type="decomposable" then getEdges() returns those edges e
for which the graph with e added is decomposable.

The functions getInEdges() and getInEdges() are just wrappers for calls to getEdges().

The workhorses are getInEdgesMAT () and getOutEdgesMAT () and these work on adjacency ma-
trices.

Regarding the argument discrete, please see the documentation of mcs_marked.

Value

A p * 2 matrix with edges.

Note

These functions work on undirected graphs. The behaviour is undocumented for directed graphs.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

getEdges 13

See Also

edgelist, nonEdgelList.

Examples

gg <- ug(~a:b:d + a:c:d + c:e, result="igraph")
glist <- getCliques(gg)
adjmat <- as(gg, "matrix")

###H# On a glist

getEdges(glist)

getEdges(glist, type="decomposable”)

Deleting (a,d) would create a 4-cycle

getEdges(glist, ingraph=FALSE)
getEdges(glist, type="decomposable”, ingraph=FALSE)
Adding (e,b) would create a 4-cycle

On a graphNEL

getEdges(gg)

getEdges(gg, type="decomposable")

Deleting (a,d) would create a 4-cycle

getEdges(gg, ingraph=FALSE)
getEdges(gg, type="decomposable”, ingraph=FALSE)
Adding (e,b) would create a 4-cycle

On an adjacency matrix
getEdges(adjmat)

getEdges(adjmat, type="decomposable”)

Deleting (a,d) would create a 4-cycle

getEdges(adjmat, ingraph=FALSE)
getEdges(adjmat, type="decomposable”, ingraph=FALSE)
Adding (e,b) would create a 4-cycle

Marked graphs; vertices a,b are discrete; c,d are continuous
UG <- ug(~a:b:c + b:c:d, result="igraph")

disc <- c("a", "b")

getEdges(UG)

getEdges (UG, discrete=disc)

Above: same results; there are 5 edges in the graph

getEdges (UG, type="decomposable")
Above: 4 edges can be removed and will give a decomposable graph
##(only removing the edge (b,c) would give a non-decomposable model)

getEdges(UG, type="decomposable”, discrete=c("a","b"))
Above: 3 edges can be removed and will give a strongly decomposable
graph. Removing (b,c) would create a 4--cycle and removing (a,b)

14 ggmfit

would create a forbidden path; a path with only continuous vertices
between two discrete vertices.

ggmfit Iterative proportional fitting of graphical Gaussian model

Description

Fit graphical Gaussian model by iterative proportional fitting.

Usage
ggmfit(
S,
n.obs,
glist,
start = NULL,
eps = le-12,
iter = 1000,
details = 0,
)
Arguments
S Empirical covariance matrix
n.obs Number of observations
glist Generating class for model (a list)
start Initial value for concentration matrix
eps Convergence criterion
iter Maximum number of iterations
details Controlling the amount of output.
Optional arguments; currently not used
Details

ggmfit is based on a C implementation. ggmfitr is implemented purely in R (and is provided
mainly as a benchmark for the C-version).

Value
A list with
1rt Likelihood ratio statistic (-2logL)
df Degrees of freedom
loglL log likelihood

K Estimated concentration matrix (inverse covariance matrix)

imodel-dmod 15

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

cmod, loglin

Examples

Fitting "butterfly model” to mathmark data

Notice that the output from the two fitting functions is not
entirely identical.

data(math)

ddd <- cov.wt(math, method="ML")

glist <- list(c("al”, "st”, "an"), c("me"”, "ve", "al"))

ggmfit (dddcov, dddn.obs, glist)

ggmfitr(dddcov, dddn.obs, glist)

imodel-dmod Discrete interaction model (log-linear model)

Description

Specification of log-linear (graphical) model. The ’d’ in the name dmod refers to that it is a (graph-
ical) model for ’d’iscrete variables

Usage

dmod (
formula,
data,
marginal = NULL,
interactions = NULL,

fit = TRUE,
details = 0,
)
Arguments
formula Model specification in one of the following forms: 1) a right-hand sided for-
mula, 2) as a list of generators, 3) an undirected graph (represented either as an
igraph object or as an adjacency matrix). Notice that there are certain model
specification shortcuts, see Section ’details’ below.
data Either a table or a dataframe. In the latter case, the dataframe will be coerced to

a table. See ’details’ below.

16 imodel-dmod

marginal Should only a subset of the variables be used in connection with the model
specification shortcuts

interactions A number given the highest order interactions in the model, see Section ’details’

below.
fit Should the model be fitted.
details Control the amount of output; for debugging purposes.

Additional arguments; currently no used.

Details

The independence model can be specified as ~.*1 and ~.*. specifies the saturated model. Setting
e.g. interactions=3 implies that there will be at most three factor interactions in the model.

Data can be specified as a table of counts or as a dataframe. If data is a dataframe then it will be
converted to a table (using xtabs()). This means that if the dataframe contains numeric values
then the you can get a very sparse and high dimensional table. When a dataframe contains numeric
values it may be worthwhile to discretize data using the cut() function.

The marginal argument can be used for specifying the independence or saturated models for only a
subset of the variables. When marginal is given the corresponding marginal table of data is formed
and used in the analysis (notice that this is different from the behaviour of loglin() which uses the
full table.

The triangulate() method for discrete models (dModel objects) will for a model look at the
dependence graph for the model.

Value

An object of class dModel.

Author(s)

S¢ren Hgjsgaard, <sorenh@math.aau.dk>

See Also

cmod, mmod

Examples

Graphical log-linear model

data(reinis)

dml <- dmod(~ .*., reinis)

dm2 <- backward(dm1, k=2)

dm3 <- backward(dml, k=2, fixin=list(c("family”, "phys", "systol")))
At most 3-factor interactions

dmi<-dmod(~ .”., data=reinis, interactions=3)

imodel-general

17

imodel-general General functions related to iModels

Description

General functions related to iModels

Usage
S3 method for class 'iModel'
logLik(object, ...)

S3 method for class 'iModel'
extractAIC(fit, scale, k = 2, ...)

S3 method for class 'iModel'
summary (object, ...)

S3 method for class 'iModelsummary'
print(x, ...)

S3 method for class 'iModel'
formula(x, ...)

S3 method for class 'iModel'
terms(x, ...)

S3 method for class 'dModel'
isGraphical (x)

S3 method for class 'dModel'
isDecomposable(x)

modelProperties(object)

S3 method for class 'dModel'
modelProperties(object)

Arguments

object, fit, x An iModel object.
Currently unused.
scale Unused (and irrelevant for these models)

k Weight of the degrees of freedom in the AIC formula

18 imodel-mmod

imodel-info Get information about mixed interaction model objects

Description

General functions related to iModels

Usage

getmi(object, name)

Arguments
object An iModel object.
name The slot / information to be extracted.
imodel-mmod Mixed interaction model.
Description

A mixed interaction model is a model (often with conditional independence restrictions) for a com-
bination of discrete and continuous variables.

Usage
mmod (formula, data, marginal = NULL, fit = TRUE, details = 0)

Arguments
formula A right hand sided formula specifying the model.
data Data (a dataframe)
marginal A possible subsets of columns of data; useful when formula contains model
specification shortcuts.
fit Currently not used
details For printing debugging information
Value

An object of class mModel and the more general class iModel.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

internal 19

See Also

dmod, cmod.

Examples

FIXME: To be written

internal Internal functions for the gRim package

Description

Internal functions for the gRim package

loglin-dim Return the dimension of a log-linear model

Description

Return the dimension of a log-linear model given by the generating class "glist’. If the model is
decomposable and adjusted dimension can be found.

Usage
dim_loglin(glist, tableinfo)

dim_loglin_decomp(glist, tableinfo, adjust = TRUE)

Arguments
glist Generating class (a list) for a log-linear model. See ’details’ below.
tableinfo Specification of the levels of the variables. See ’details’ below.
adjust Should model dimension be adjusted for sparsity of data (only available for
decomposable models)
Details

glist can be either a list of vectors with variable names or a list of vectors of variable indices.

tableinfo can be one of three different things.

1. A contingency table (a table).

2. A list with the names of the variables and their levels (such as one would get if calling
dimnames on a table).

20 loglin-effloglin

3. A vector with the levels. If glist is a list of vectors with variable names, then the entries of
the vector tableinfo must be named.

If the model is decomposable it dim_loglin_decomp is to be preferred over dim_loglin as the
former is much faster.

Setting adjust=TRUE will force dim_loglin_decomp to calculated a dimension which is adjusted
for sparsity of data. For this to work, tableinfo MUST be a table.

Value

A numeric.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

dmod, glm, loglm

Examples

glist contains variable names and tableinfo is a named vector:
dim_loglin(list(c("a", "b"), c("b", "c")), c(a=4, b=7, c=6))

glist contains variable names and tableinfo is not named:
dim_loglin(list(c(1, 2), c(2, 3)), c(4, 7, 6))

For decomposable models:
dim_loglin_decomp(list(c(”a”, "b"), c("b", "c")), c(a=4, b=7, c=6),adjust=FALSE)

loglin-effloglin Fitting Log-Linear Models by Message Passing

Description

Fit log-linear models to multidimensional contingency tables by Iterative Proportional Fitting.

Usage

effloglin(table, margin, fit = FALSE, eps = 0.01, iter = 20, print = TRUE)

loglin-effloglin

Arguments
table
margin
fit
eps
iter

print

Details

21

A contingency table

A generating class for a hierarchical log—linear model
If TRUE, the fitted values are returned.

Convergence limit; see "details’ below.

Maximum number of iterations allowed

If TRUE, iteration details are printed.

The function differs from loglin in that 1) data can be given in the form of a list of sufficient
marginals and 2) the model is fitted only on the cliques of the triangulated interaction graph of the
model. This means that the full table is not fitted, which means that effloglin is efficient (in terms
of storage requirements). However effloglin is implemented entirely in R and is therefore slower
than loglin. Argument names are chosen so as to match those of loglin()

Value

A list.

Author(s)

Sgren Hgjsgaard, <sorenh@math. aau.dk>

References

Radim Jirousek and Stanislav Preucil (1995). On the effective implementation of the iterative pro-
portional fitting procedure. Computational Statistics & Data Analysis Volume 19, Issue 2, February
1995, Pages 177-189

See Also

loglin

Examples

data(reinis)

glist <-list(c("smoke"”, "mental"”), c("mental”, "phys"),

c("phys”, "systol"), c("systol”, "smoke"))

stab <- lapply(glist, function(gg) tabMarg(reinis, gg))
fv3 <- effloglin(stab, glist, print=FALSE)

22 modify_glist

modify_glist Modify generating class for a graphical/hierarchical model

Description
Modify generating class for a graphical/hierarchical model by 1) adding edges, 2) deleting edges,
3) adding terms and 4) deleting terms.

Usage
modify_glist(glist, items, details = 0)

Arguments
glist A list of vectors where each vector is a generator of the model.
items A list with edges / terms to be added and deleted. See section ’details’ below.
details Control the amount of output (for debugging purposes).

Details

The items is a list with named entries as 1ist (add. edge=,drop.edge=, add.term=, drop.term=)

Not all entries need to be in the list. The corresponding actions are carried out in the order in which
they appear in the list.

See section “examples’ below for examples.

Notice that the operations do not in general commute: Adding an edge which is already in a gener-
ating class and then removing the edge again does not give the original generating class.

Value

A generating class for the modified model. The elements of the list are character vectors.

Author(s)

Sgren Hgjsgaard, <sorenh@math. aau.dk>

See Also

cmod, dmod, mmod

Examples

glist <- list(c(1, 2, 3), c(2, 3, 4))

Add edges
modify_glist(glist, items=list(add.edge=c(1, 4)))
modify_glist(glist, items=list(add.edge=~1:4))

parm-conversion 23

Add terms
modify_glist(glist, items=list(add.term=c(1, 4)))
modify_glist(glist, items=list(add.term=~1:4))

Notice: Only the first term is added as the second is already
in the model.

modify_glist(glist, items=list(add.term=1list(c(1, 4), c(1, 3))))
modify_glist(glist, items=list(add.term=~1:4 + 1:3))

Notice: Operations are carried out in the order given in the

items list and hence we get different results:
modify_glist(glist, items=list(drop.edge=c(1, 4), add.edge=c(1, 4)))
modify_glist(glist, items=list(add.edge=c(1, 4), drop.edge=c(1, 4)))

parm-conversion Conversion between different parametrizations of mixed models

Description

Functions to convert between canonical parametrization (g,h,K), moment parametrization (p,m,S)
and mixed parametrization (p,h,K).

Usage
parm_pms2ghk (parms)
parm_ghk2pms (parms)
parm_pms2phk (parms)
parm_phk2ghk (parms)
parm_phk2pms (parms)
parm_ghk2phk (parms)
parm_CGstats2mmod(parms, type = "ghk")

parm_moment2pms (SS)

Arguments
parms Parameters of a mixed interaction model
type Output parameter type; either "ghk" or "pms".

SS List of moment parameters.

24 parse_gm_formula

Value

Parameters of a mixed interaction model.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

parse_gm_formula Parse graphical model formula

Description

Parse graphical model formula to internal representation

Usage
parse_gm_formula(
formula,
varnames = NULL,
marginal = NULL,
interactions = NULL
)
Arguments
formula A right hand sided formula or a list.
varnames Specification of the variables.
marginal Possible specification of marginal (a set of variables); useful in connection with

model specification shortcuts.

interactions The maximum order of interactions allowed; useful in connection with model
specification shortcuts.

Examples

n

vn <- c("me", "ve", "al", "an", "st")
forml <- ~me:ve:al + ve:al + an

form2 <- ~me:ve:al + ve:al + s

form3 <- ~me:ve:al + ve:al + anaba
parse_gm_formula(forml, varnames=vn)
parse_gm_formula(form2, varnames=vn)

parse_gm_formula(form3, varnames=vn)
parse_gm_formula(forml)
parse_gm_formula(form2)
parse_gm_formula(form3)

parse_gm_formula(~."1)

stepwise 25

parse_gm_formula(~.*.)

parse_gm_formula(~.*1, varnames=vn)
parse_gm_formula(~.*., varnames=vn)
parse_gm_formula(~.*., varnames=vn, interactions=3)

vn2 <- vn[1:3]

parse_gm_formula(forml, varnames=vn, marginal=vn2)
parse_gm_formula(form2, varnames=vn, marginal=vn2)
parse_gm_formula(form3, varnames=vn, marginal=vn2)
parse_gm_formula(~.*1, varnames=vn, marginal=vn2)
parse_gm_formula(~.”., varnames=vn, marginal=vn2)

stepwise Stepwise model selection in (graphical) interaction models

Description

Stepwise model selection in (graphical) interaction models

Usage

drop_func(criterion)

S3 method for class 'iModel'

stepwise(
object,
criterion = "aic",
alpha = NULL,
type = "decomposable”,
search = "all",
steps = 1000,
k =2,
direction = "backward”,
fixin = NULL,
fixout = NULL,
details = 0,
trace = 2,
)
backward(
object,
criterion = "aic",
alpha = NULL,

type = "decomposable”,
search = "all",

26 stepwise

steps = 1000,
k =2,
fixin = NULL,
details =1,
trace = 2,
)
forward(
object,
criterion = "aic",
alpha = NULL,
type = "decomposable”,
search = "all",
steps = 1000,
k =2,
fixout = NULL,
details = 1,
trace = 2,
)
Arguments
criterion Either "aic"” or "test” (for significance test)
object An iModel model object
alpha Critical value for deeming an edge to be significant/ insignificant. When criterion="aic",
alpha defaults to 0; when criterion="test", alpha defaults to 0.05.
type Type of models to search. Either "decomposable” or "unrestricted”. If
type="decomposable” and the initial model is decompsable, then the search
is among decomposable models only.
search Either 'all' (greedy) or 'headlong' (search edges randomly; stop when an
improvement has been found).
steps Maximum number of steps.
k Penalty term when criterion="aic". Only k=2 gives genuine AIC.
direction Direction for model search. Either "backward” or "forward”.
fixin Matrix (p x 2) of edges. If those edges are in the model, they are not considered
for removal.
fixout Matrix (p x 2) of edges. If those edges are not in the model, they are not consid-
ered for addition.
details Controls the level of printing on the screen.
trace For debugging only

Further arguments to be passed on to testdelete (for testInEdges) and testadd
(for testOutEdges).

test-edges

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

cmod, dmod, mmod, testInEdges, testOutEdges

Examples

data(reinis)

The saturated model

ml <- dmod(~.*., data=reinis)
m2 <- stepwise(m1)

m2

test-edges Test edges in graphical models with p-value/AIC value

Description

Test edges in graphical models with p-value/AIC value. The models must be iModels.

Usage

testEdges(
object,
edgeMAT = NULL,
ingraph = TRUE,
criterion = "aic”,
k =2,
alpha = NULL,
headlong = FALSE,
details = 1,

)

testInEdges(
object,
edgeMAT = NULL,
criterion = "aic”,
k =2,
alpha = NULL,
headlong = FALSE,
details =1,

28 test-edges

testOutEdges(
object,
edgeMAT = NULL,
criterion = "aic",
k =2,
alpha = NULL,
headlong = FALSE,
details =1,
)
Arguments
object An iModel model object
edgeMAT A p * 2 matrix with edges
ingraph If TRUE, edges in graph are tested; if FALSE, edges not in graph are tested.
criterion Either "aic"” or "test"” (for significance test)
k Penalty term when criterion="aic". Only k=2 gives genuine AIC.
alpha Critical value for deeming an edge to be significant/ insignificant. When criterion="aic",
alpha defaults to O; when criterion="test", alpha defaults to 0.05.
headlong If TRUE then testing will stop once a model improvement has been found.
details Controls the level of printing on the screen.
Further arguments to be passed on to testdelete (for testInEdges) and testadd
(for testOutEdges).
Details

* testIn: Function which tests whether each edge in "edgeList" can be delete from model "ob-
ject"

« testOut: Is similar but in the other direction.

Value
A dataframe with test statistics (p-value or change in AIC), edges and logical telling if the edge can
be deleted.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

getEdges, testadd, testdelete

testadd 29

Examples

data(math)

cml <- cmod(~me:ve + ve:al + al:an, data=math)
testEdges(cml, ingraph=TRUE)

testEdges(cml, ingraph=FALSE)

Same as

testInEdges(cm1)

testOutEdges(cm)

testadd Test addition of edge to graphical model

Description

Performs a test of addition of an edge to a graphical model (an iModel object).

Usage

testadd(object, edge, k = 2, details = 1, ...)
Arguments

object A model; an object of class iModel.

edge An edge; either as a vector or as a right hand sided formula.

k Penalty parameter used when calculating change in AIC

details The amount of details to be printed; O surpresses all information

Further arguments to be passed on to the underlying functions for testing.

Details

Let MO be the model and e=u,v be an edge and let M1 be the model obtained by adding e to MO.
If M1 is decomposable AND e is contained in one clique C only of M1 then the test is carried out
in the C-marginal model. In this case, and if the model is a log-linear model then the degrees of
freedom is adjusted for sparsity.

Value

A list

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

testdelete

30 testdelete

Examples

Discrete models
data(reinis)

A decomposable model

mf <- ~smoke:phys:mental + smoke:systol:mental
object <- dmod(mf, data=reinis)
testadd(object, c(”systol”, "phys"))

A non-decomposable model

mf <- ~smoke:phys + phys:mental + smoke:systol + systol:mental
object <- dmod(mf, data=reinis)

testadd(object, c("phys”, "systol"))

Continuous models
data(math)

A decomposable model
mf <- ~me:ve:al + al:an
object <- cmod(mf, data=math)
testadd(object, c("me", "an"))

A non-decomposable model

mf <- ~me:ve + ve:al + al:an + an:me
object <- cmod(mf, data=math)
testadd(object, c("me”, "al"))

testdelete Test deletion of edge from an interaction model

Description

Tests if an edge can be deleted from an interaction model.

Usage
testdelete(object, edge, k = 2, details =1, ...)
Arguments
object A model; an object of class iModel.
edge An edge in the model; either as a right-hand sided formula or as a vector
k Penalty parameter used when calculating change in AIC
details The amount of details to be printed; O surpresses all information

Further arguments to be passed on to the underlying functions for testing.

testdelete 31

Details

If the model is decomposable and the edge is contained in one clique only then the test is made in
the marginal model given by that clique. In that case, if the model is a log-linear model then degrees
of freedom are adjusted for sparsity

If model is decomposable and edge is in one clique only, then degrees of freedom are adjusted for
sparsity

Value

A list.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

testadd

Examples

Discrete models
data(reinis)

A decomposable model

mf <- ~smoke:phys:mental + smoke:systol:mental
object <- dmod(mf, data=reinis)
testdelete(object, c(”"phys”, "mental”))
testdelete(object, c(”smoke”, "mental”))

A non-decomposable model
mf <- ~smoke:phys + phys:mental + smoke:systol + systol:mental
object <- dmod(mf, data=reinis)

testdelete(object, c(”phys”, "mental"))

Continuous models
data(math)

A decomposable model

mf <- ~me:ve:al + me:al:an
object <- cmod(mf, data=math)
testdelete(object, c("ve”, "al"))
testdelete(object, c("me”, "al"))

A non-decomposable model

mf <- ~me:ve + ve:al + al:an + an:me
object <- cmod(mf, data=math)
testdelete(object, c("me”, "ve"))

Index

x htest citest-ordinal, 9
citest-array, 3 ciTest_df, 4,7, 8
citest-df, 5 ciTest_df (citest-df),5
citest-generic, 6 ciTest_mvn, 4, 6-8
citest-mvn, 8 ciTest_mvn (citest-mvn), 8
citest-ordinal, 9 ciTest_ordinal (citest-ordinal), 9
test-edges, 27 ciTest_table, 6-8, 10
testadd, 29 ciTest_table (citest-array), 3
testdelete, 30 cmod, 10, 15, 16, 19, 22,27

+ models coef.mModel (imodel-mmod), 18
cmod, 10 coefficients.mModel (imodel-mmod), 18
ggmfit, 14 cov.wt, 3
imodel-dmod, 15
imodel-mmod, 18 dim_loglin (loglin-dim), 19
loglin-dim, 19 dim_loglin_decomp (loglin-dim), 19
loglin-effloglin, 20 dmod, /1, 19, 20, 22, 27
stepwise, 25 dmod (imodel-dmod), 15
test-edges, 27 drop_func (stepwise), 25

testadd, 29
testdelete, 30
+ multivariate

edgelist, I3
effloglin (loglin-effloglin), 20
extract_cmod_data (cmod), 10

.g-g.mflt, 14 extractAIC.iModel (imodel-general), 17
+ utilities
cg-stats, 2 fitted.dModel (imodel-dmod), 15
getEdges, 12 formula.iModel (imodel-general), 17
modify_glist, 22 forward (stepwise), 25
parm-conversion, 23
%>% (internal), 19 getEdges, 12, 28
getEdgesMAT (getEdges), 12
backward (stepwise), 25 getInEdges (getEdges), 12
getInEdgesMAT (getEdges), 12
cg-stats, 2 getmi (imodel-info), 18
CGstats (cg-stats), 2 getOutEdges (getEdges), 12
chisqg.test, 4,6-8 getOutEdgesMAT (getEdges), 12
ciTest, 4,6, 8, 10 ggnfit, 11, 14
ciTest (citest-generic), 6 ggnfitr (ggmfit), 14
citest-array, 3 glm, 20
citest-df, 5
citest-generic, 6 imodel-dmod, 15
citest-mvn, 8 imodel-general, 17

32

INDEX

imodel-info, 18 testInEdges (test-edges), 27

imodel-mmod, 18 testOutEdges, 27

internal, 19 testOutEdges (test-edges), 27

isDecomposable.dModel (imodel-general), triangulate.dModel (imodel-dmod), 15
17

isGraphical.dModel (imodel-general), 17

loglLik. iModel (imodel-general), 17
loglin, 15, 21

loglin-dim, 19
loglin-effloglin, 20

loglm, 20

mcs_marked, 12

mmod, /1, 16, 22,27

mmod (imodel-mmod), 18
mmod_dimension (imodel-mmod), 18
modelProperties (imodel-general), 17
modify_glist, 22

nonEdgelList, 13

parm-conversion, 23

parm_CGstats2mmod (parm-conversion), 23
parm_ghk2phk (parm-conversion), 23
parm_ghk2pms (parm-conversion), 23
parm_moment2pms (parm-conversion), 23
parm_phk2ghk (parm-conversion), 23
parm_phk2pms (parm-conversion), 23
parm_pms2ghk (parm-conversion), 23
parm_pms2phk (parm-conversion), 23
parse_gm_formula, 24

print.dModel (imodel-dmod), 15
print.iModelsummary (imodel-general), 17
print.mModel (imodel-mmod), 18
print.testadd (testadd), 29
print.testdelete (testdelete), 30

residuals.dModel (imodel-dmod), 15

stepwise, 25
summary.iModel (imodel-general), 17
summary .mModel (imodel-mmod), 18

terms. iModel (imodel-general), 17
test-edges, 27

testadd, 28, 29, 31
testdelete, 28, 29, 30

testEdges (test-edges), 27
testInEdges, 27

	cg-stats
	citest-array
	citest-df
	citest-generic
	citest-mvn
	citest-ordinal
	cmod
	getEdges
	ggmfit
	imodel-dmod
	imodel-general
	imodel-info
	imodel-mmod
	internal
	loglin-dim
	loglin-effloglin
	modify_glist
	parm-conversion
	parse_gm_formula
	stepwise
	test-edges
	testadd
	testdelete
	Index

