--- title: "Introduction to fixes" author: "Yosuke Abe" date: "`r Sys.setlocale('LC_TIME', 'C'); format(Sys.Date(), '%B %d, %Y')`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to fixes} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Introduction The **fixes** package provides a set of tools for creating, estimating, and visualizing event study models using fixed effects regression. With **fixes**, you can easily generate lead and lag dummy variables, estimate a fixed effects model via `fixest::feols()`, and visualize the results using `ggplot2`. This vignette walks you through a minimal example to demonstrate the core functionality of the package. ## Installation You can install the released version from CRAN: ``` r pak::pak("fixes") ``` Alternatively, you can use: ``` r install.packages("fixes") ``` To install the development version directly from GitHub, run: ``` r pak::pak("yo5uke/fixes") ``` or ``` r devtools::install_github("yo5uke/fixes") ``` ## A Minimal Example Below is a simple example to simulate a small panel dataset and perform an event study analysis. In this example, we assume an event (treatment) occurs in 2005. ``` r library(fixes) library(tibble) library(dplyr) # Simulate panel data set.seed(2) n_firms <- 1000 n_states <- 50 T <- 36 firm_id <- 1:n_firms state_id <- sample(n_states, size = n_firms, replace = TRUE) year <- 1980:2015 fe_firm <- rnorm(n_firms, mean = 0, sd = .5) fe_year <- rnorm(T, mean = 0, sd = .5) error <- rnorm(n_firms * T, mean = 0, sd = .5) treated_1998 <- sample(c(1, 0), size = n_firms, replace = TRUE, prob = c(1/2, 1/2)) df <- tibble::tibble( firm_id = rep(firm_id, each = T), state_id = rep(state_id, each = T), year = rep(year, times = n_firms), fe_firm = rep(fe_firm, each = T), fe_year = rep(fe_year, times = n_firms), error = error, is_treated = rep(treated_1998, each = T), after_treat = dplyr::if_else(is_treated == 1 & year >= 1998, 1, 0), y = dplyr::case_when( after_treat == 1 ~ rnorm(n_firms * T, mean = .3, sd = .2) * (year - 1997) + fe_firm + fe_year + error, .default = fe_firm + fe_year + error ) ) # Run the event study event_study <- run_es( data = df, outcome = y, treatment = is_treated, time = year, timing = 1998, lead_range = 18, # Corresponds to years 2000-2004 (relative time: -5 to -1) lag_range = 17, # Corresponds to years 2006-2009 (relative time: 1 to 4) fe = firm_id + year, cluster = "state_id", baseline = -1, interval = 1 ) # View the first few rows of the event study results head(event_study) ``` ## Visualizing the Event Study Results The **fixes** package provides the `plot_es()` function to create visualizations of your event study results. Here are some examples: ``` r # Basic plot using ribbon-style confidence intervals p1 <- plot_es(event_study) print(p1) # Plot with error bars instead of a ribbon p2 <- plot_es(event_study, type = "errorbar") print(p2) # Plot with a custom vertical reference line p3 <- plot_es(event_study, type = "errorbar", vline_val = -0.5) print(p3) # Customized plot: adjust axis breaks and add a title library(ggplot2) p4 <- plot_es(event_study, type = "errorbar") + scale_x_continuous(breaks = seq(-5, 4, by = 1)) + ggtitle("Result of Event Study") print(p4) ``` ## Package Details The **fixes** package is designed for panel data analysis and supports custom time intervals. Key functions include: - `run_es()`: - Automatically generates lead and lag dummy variables relative to the treatment event. - Constructs and estimates a fixed effects regression model using `fixest::feols()`. - Returns a tidy dataframe with estimated coefficients, standard errors, and confidence intervals. - `plot_es()`: - Provides a flexible visualization tool using `ggplot2`. - Offers both ribbon-style and error bar representations of confidence intervals. - Can be further customized with standard ggplot2 functions. ## Conclusion The **fixes** package streamlines the process of performing event study analyses with fixed effects. It simplifies the estimation and visualization steps, making it easier to interpret dynamic treatment effects in panel data. For more information, consult the package documentation: ``` r ?run_es ?plot_es ``` Happy analyzing!🥂