## ----set-options, echo=FALSE, cache=FALSE--------------------------------------------------------- options(width = 100) ## ------------------------------------------------------------------------------------------------- library(fitPoly) data(scores) ## ----echo=FALSE----------------------------------------------------------------------------------- df <- scores[scores$marker==5,] for (col in c(4:9,11)) df[,col] <- round(df[,col],3) head(df) ## ------------------------------------------------------------------------------------------------- # specify parental and F1 samples: par1 <- "P540a1" par2 <- c("P867a1","P867a2","P867b") F1 <- levels(scores$SampleName)[substr(levels(scores$SampleName),1,1)=="K"] chk1 <- checkF1(scores, par1, par2, F1, polysomic=TRUE, disomic=TRUE, mixed=FALSE, ploidy=4, outfile=NA) #some parts of the result: knitr::kable(chk1[1:4,1:14]) knitr::kable(chk1[1:4,c(1:2, 19:22, 26)]) ## ------------------------------------------------------------------------------------------------- cordos <- correctDosages(chk1, scores, par1, par2, ploidy=4, polysomic=TRUE, disomic=TRUE, mixed=FALSE) # show the nonzero shifts: cordos[cordos$shift!=0,] ## ------------------------------------------------------------------------------------------------- #select the markers where a shift should be tried: cordos <- cordos[cordos$shift != 0,] subscores <- scores[scores$MarkerName %in% as.character(cordos$MarkerName),] chk2 <- checkF1(subscores, par1, par2, F1, polysomic=TRUE, disomic=TRUE, mixed=FALSE, ploidy=4, outfile=NA, shiftmarkers=cordos) ## ------------------------------------------------------------------------------------------------- chk1$shift <- 0 chk <- rbind(chk1, chk2) chk <- chk[order(chk$MarkerName),] ## ----eval=FALSE----------------------------------------------------------------------------------- # data("XYdat") # XYgeno <- combineFiles(XYdata=XYdat, scores=scores) # # define qall levels of 0, 0.05, 0.10 up to 1 where we want to inspect some SNPs: # qall.levels <- seq(0, 1, by=0.05) # # select six SNPs with qall values near each of these values and draw their plots: # chkx <- selMarkers_qall(chk, qall.levels, mrkperlevel=6) # drawXYplots(dat=XYgeno, markers=chkx, # out="your-path-and filename", # genocol=get.genocol(ploidy=4), sample.groups=list(par1, par2), # groups.col=c("red", "blue"), ploidy=4) ## ------------------------------------------------------------------------------------------------- #select only the markers with qall_mult > 0: chk <- chk[!is.na(chk$qall_mult) & chk$qall_mult > 0,] #write the dosage file, applying the shifts as listed in chk: dosages <- writeDosagefile(chk, scores, par1, par2, F1, polysomic=TRUE, disomic=TRUE, mixed=FALSE, ploidy=4, scorefile=NA) knitr::kable(dosages[10:14, 1:12]) ## ------------------------------------------------------------------------------------------------- cpp <- compareProbes(chk, scores, parent1=par1, parent2=par2, F1=F1, polysomic=TRUE, disomic=TRUE, mixed=FALSE, ploidy=4, compfile=NA, combscorefile=NA) knitr::kable(head(cpp$compstat)) knitr::kable(cpp$combscores[1:4, 1:12]) ## ------------------------------------------------------------------------------------------------- rr <- removeRedundant(compstat=cpp$compstat, combscores=cpp$combscores, compfile=NA, combscorefile=NA) knitr::kable(rr$combscores[1:4, 1:12])