--- title: "Glowworms" execute: execute-dir: file format: html: toc: true toc-depth: 2 number-sections: true toc-location: left fig-cap-location: top code-fold: false code-tools: true theme: flatly page-layout: full editor: visual vignette: > %\VignetteIndexEntry{Glowworms} %\VignetteEngine{quarto::html} %\VignetteEncoding{UTF-8} --- ```{r, echo=FALSE, message=FALSE, warning=FALSE} # Ensure the temporary library from R CMD check is visible (esp. on Windows) libdir <- Sys.getenv("R_LIBS") if (nzchar(libdir)) { parts <- strsplit(libdir, .Platform$path.sep, fixed = TRUE)[[1]] .libPaths(unique(c(parts, .libPaths()))) } # now load your package suppressPackageStartupMessages(library(ecotourism)) ``` ::: {style="text-align:center"} ![](image/glowworm.jpg){width="300"} [Photo by Alan Rockefeller. Licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).]{style="font-size: 50%; align: center; margin-top:0.02em;"} ::: ## Introduction This vignette demonstrates how to **analyze occurrence data for Glowworms in Australia**, using records from the [Atlas of Living Australia (ALA)](https://www.ala.org.au/). The dataset has been prepared for you to explore, making it suitable for both study and practice with real-world ecological data. In this vignette we provide short examples of how to manipulate and visualize the dataset, but you are encouraged to develop your own creative approaches for analysis and visualization. ------------------------------------------------------------------------ This is the glimpse of your data : ```{r, echo=TRUE, eval=TRUE, message=FALSE, warning=FALSE} library(dplyr) library(ecotourism) data("glowworms") glowworms |> glimpse() ``` ## Visualization ### Spatial Distribution Map Distribution of Occurrence Glowworms Sightings in Australia ```{r echo=TRUE, fig.width=6, fig.height=4, eval=TRUE} library(ggplot2) library(ggthemes) glowworms |> ggplot() + geom_sf(data = oz_lga) + geom_point(aes(x = obs_lon, y = obs_lat), color = "red") + theme_map() ``` ------------------------------------------------------------------------ ## Weekly, Monthly, and Yearly Trends Weekday Distribution of Glowworms Sightings ```{r echo=TRUE, fig.width=6, fig.height=4, eval=TRUE} week_order <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday") glowworms |> ggplot(aes(x = factor(weekday, levels = week_order))) + geom_bar() + labs(x = "Weekday", y = "Number of Records") + theme_minimal() ``` Monthly Distribution of Glowworms Sightings ```{r echo=TRUE, fig.width=6, fig.height=4, eval=TRUE, message=FALSE, warning=FALSE} library(lubridate) glowworms |> dplyr::mutate(month = month(month, label = TRUE, abbr = TRUE)) |> ggplot(aes(x = factor(month))) + geom_bar() + labs(x = "Month", y = "Number of Records") + theme_minimal() ``` Yearly Distribution of Glowworms Sightings ```{r echo=TRUE, fig.width=6, fig.height=4, eval=TRUE} glowworms |> ggplot(aes(x = factor(year))) + geom_bar() + labs(x = "Year", y = "Number of Records")+ theme_minimal() ``` ------------------------------------------------------------------------ ## Relational visualization We want to see if `glowworms` occurrences are related to tourism quarter trips on the same day from the weather dataset. Here’s a short R script that: 1. Joins `glowworms` with **weather** using `ws_id` and `date`. 2. Counts daily occurrences. 3. Plots quarter number of `glowworms` sightings. ```{r, echo=TRUE, eval=TRUE, message=FALSE, warning=FALSE, fig.width=6, fig.height=4} # Prepare glowworms occurrence counts per quarter glowworms_quarterly <- glowworms |> mutate(quarter = quarter(date)) |> group_by(year, quarter, ws_id) |> summarise(occurrence = n(), .groups = "drop") # tourism quarterly spot data set near glowworms occurrence tourism_sub <- tourism_quarterly |> filter(ws_id %in% glowworms$ws_id) glowworms_tourism <- glowworms_quarterly |> left_join(tourism_sub, by=c("ws_id", "year", "quarter")) # Simple scatter plot: precipitation vs glowworms occurrence ggplot(glowworms_tourism, aes(x = quarter, y = occurrence)) + geom_jitter(width=0.1) + stat_summary(colour="red", geom = "point", size=3) + labs( title = "Relationship between tourism and glowworms occurrence", x = "Quarter", y = "Occurrence (jittered)" ) + theme_minimal() ```