## ----echo=FALSE, message=FALSE, warning=FALSE--------------------------------- # Ensure the temporary library from R CMD check is visible (esp. on Windows) libdir <- Sys.getenv("R_LIBS") if (nzchar(libdir)) { parts <- strsplit(libdir, .Platform$path.sep, fixed = TRUE)[[1]] .libPaths(unique(c(parts, .libPaths()))) } # now load your package suppressPackageStartupMessages(library(ecotourism)) ## ----echo=TRUE, eval=TRUE, message=FALSE, warning=FALSE----------------------- library(dplyr) library(ecotourism) data("glowworms") glowworms |> glimpse() ## ----echo=TRUE, fig.width=6, fig.height=4, eval=TRUE-------------------------- library(ggplot2) library(ggthemes) glowworms |> ggplot() + geom_sf(data = oz_lga) + geom_point(aes(x = obs_lon, y = obs_lat), color = "red") + theme_map() ## ----echo=TRUE, fig.width=6, fig.height=4, eval=TRUE-------------------------- week_order <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday") glowworms |> ggplot(aes(x = factor(weekday, levels = week_order))) + geom_bar() + labs(x = "Weekday", y = "Number of Records") + theme_minimal() ## ----echo=TRUE, fig.width=6, fig.height=4, eval=TRUE, message=FALSE, warning=FALSE---- library(lubridate) glowworms |> dplyr::mutate(month = month(month, label = TRUE, abbr = TRUE)) |> ggplot(aes(x = factor(month))) + geom_bar() + labs(x = "Month", y = "Number of Records") + theme_minimal() ## ----echo=TRUE, fig.width=6, fig.height=4, eval=TRUE-------------------------- glowworms |> ggplot(aes(x = factor(year))) + geom_bar() + labs(x = "Year", y = "Number of Records")+ theme_minimal() ## ----echo=TRUE, eval=TRUE, message=FALSE, warning=FALSE, fig.width=6, fig.height=4---- # Prepare glowworms occurrence counts per quarter glowworms_quarterly <- glowworms |> mutate(quarter = quarter(date)) |> group_by(year, quarter, ws_id) |> summarise(occurrence = n(), .groups = "drop") # tourism quarterly spot data set near glowworms occurrence tourism_sub <- tourism_quarterly |> filter(ws_id %in% glowworms$ws_id) glowworms_tourism <- glowworms_quarterly |> left_join(tourism_sub, by=c("ws_id", "year", "quarter")) # Simple scatter plot: precipitation vs glowworms occurrence ggplot(glowworms_tourism, aes(x = quarter, y = occurrence)) + geom_jitter(width=0.1) + stat_summary(colour="red", geom = "point", size=3) + labs( title = "Relationship between tourism and glowworms occurrence", x = "Quarter", y = "Occurrence (jittered)" ) + theme_minimal()