--- title: "Phenol Red - pH Indicator" author: "Glenn Davis" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true number_sections: false bibliography: bibliography.bib csl: personal.csl vignette: > %\VignetteIndexEntry{Phenol Red - pH Indicator} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- Phenol red is an indicator commonly used to measure pH in swimming pool test kits, see e.g. @K-1000. The goal of this **colorSpec** vignette is to reproduce the colors seen in such a test kit, for typical values of pool pH. Calculations like this one might make a good project for a college freshman chemistry class. Featured functions in this vignette are: `interpolate()` and `calibrate()`. ```{r, echo=TRUE, message=FALSE} library( colorSpec ) library( spacesRGB ) # for functions plotPatchesRGB() and SignalRGBfromLinearRGB() ```
## Absorbance Spectra at Different pH Values The absorbance data for phenol red has already been digitized from @Rovati: ```{r fig.width=7, fig.height=4, fig.show='hold', dev='png' } path = system.file( "extdata/stains/PhenolRed-Fig7.txt", package="colorSpec" ) wave = 350:650 phenolred = readSpectra( path, wavelength=wave ) par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.4,0.2) ) plot( phenolred, main='Absorbance Spectra of Phenol Red at Different pH Values' ) ``` Compare this plot with @Rovati, Fig. 7. Unfortunately, the concentration and optical path length are unknown, but these curves can still be used as 'relative absorbance'.
## Absorbance at Selected Wavelengths We investigate how absorbance depends on pH for a few selected wavelengths. ```{r, echo=TRUE, message=TRUE, fig.width=7, fig.height=5, fig.show='hold' , dev='png' } wavesel = c( 365, 430, 477, 520, 560, 590 ) # 365 and 477 are 'isosbestic points' mat = apply( as.matrix(wavesel), 1, function( lambda ) { as.numeric(lambda == wave) } ) colnames( mat ) = sprintf( "%g nm", wavesel ) mono = colorSpec( mat, wavelength=wave, quantity='power' ) RGB = product( mono, BT.709.RGB, wavelength=wave ) # this is *linear* RGB colvec = grDevices::rgb( SignalRGBfromLinearRGB( RGB/max(RGB), which='scene' )$RGB ) phenolsel = resample( phenolred, wavesel ) pH = as.numeric( sub( '[^0-9]*([0-9]+)$', '\\1', specnames(phenolred) ) ) pHvec = seq(min(pH),max(pH),by=0.05) phenolsel = interpolate( phenolsel, pH, pHvec ) mat = t( as.matrix( phenolsel ) ) par( omi=c(0,0,0,0), mai=c(0.8,0.9,0.6,0.4) ) plot( range(pH), range(mat), las=1, xlab='pH', ylab='absorbance', type='n' ) grid( lty=1 ) ; abline( h=0 ) matlines( pHvec, mat, lwd=3, col=colvec, lty=1 ) title( "Absorbance of Phenol Red at Selected Wavelengths") legend( 'topleft', specnames(mono), col=colvec, lty=1, lwd=3, bty='n' ) ```
Note that the curves for the isosbestic points 365 and 477 nm are approximately flat, as expected. But for 430 nm the curve is distinctly non-monotone. This indicates that the solution is not truly a mixture of the acidic and basic species (especially for pH $\le$ 6), and there may be an undesired side reaction, see @wiki:pH.
## Interpolation from pH=6.8 to pH=8.2 Swimming pools should be slightly basic; a standard test kit covers the range from pH=6.8 to pH=8.2. ```{r, echo=TRUE, message=TRUE, results='hold', fig.width=7, fig.height=4, fig.show='hold'} pHvec = seq(6.8,8.2,by=0.2) phenolpool = interpolate( phenolred, pH, pHvec ) par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.4,0.2) ) plot( phenolpool, main="Absorbance Spectra of Phenol Red at Swimming Pool pH Values" ) ``` The rest of this section is best viewed on a display calibrated for sRGB, see @wiki:sRGB. ```{r, echo=TRUE, message=TRUE } # create an uncalibrated 'material responder' testkit = product( D65.1nm, 'solution', BT.709.RGB, wave=wave ) # now calibrate so that fully transparent pure water has response RGB=c(1,1,1) testkit = calibrate( testkit, response=1 ) RGB = product( phenolpool, testkit ) RGB ``` Unfortunately, in some cases the red value is greater than 1 (G and B are OK). The color is outside the sRGB gamut. Start over and recalibrate. ```{r, echo=TRUE, message=TRUE } testkit = product( D65.1nm, 'solution', BT.709.RGB, wave=wave ) # recalibrate, but lower the background a little, to allow more 'headroom' for indicator colors bglin = 0.96 # graylevel for the background, linear testkit = calibrate( testkit, response=bglin ) RGB = product( phenolpool, testkit ) # this is *linear* sRGB RGB ``` All values have been multiplied by `bglin`, and are now OK. Draw the RGB patches on a white background multiplied by the same amount. ```{r, echo=TRUE, fig.width=7, fig.height=2.5, fig.show='hold'} df.RGB = data.frame( LEFT=1:nrow(RGB), TOP=0, WIDTH=1, HEIGHT=2 ) df.RGB$RGB = RGB par( omi=c(0,0,0,0), mai=c(0.3,0,0.3,0) ) plotPatchesRGB( df.RGB, space='sRGB', which='scene', labels=F, background=bglin ) text( (1:nrow(RGB)) + 0.5, 2, sprintf("%.1f",pHvec), adj=c(0.5,1.2), xpd=NA ) title( main='Calculated Colors for pH from 6.8 to 8.2' ) ``` The background color is that of pure water, and is not the full RGB=(255,255,255). In the first figure above, the phenol red concentration and optical path length are unknown. Compared to a real test kit, the calculated colors look a little faded. An absorbance multiplier can easily tweak the unknown concentration, as follows. ```{r, echo=TRUE, fig.width=7, fig.height=2.5, fig.show='hold'} tweak = 1.3 phenolpool = multiply( phenolpool, tweak ) df.RGB = data.frame( LEFT=1:nrow(RGB), TOP=0, WIDTH=1, HEIGHT=2 ) df.RGB$RGB = product( phenolpool, testkit ) # this is *linear scene* sRGB par( omi=c(0,0,0,0), mai=c(0.3,0,0.3,0) ) plotPatchesRGB( df.RGB, space='sRGB', which='scene', background=bglin, labels=F ) text( (1:nrow(RGB)) + 0.5, 2, sprintf("%.1f",pHvec), adj=c(0.5,1.2), xpd=NA ) main = sprintf( 'Calculated Colors for pH from 6.8 to 8.2 (absorbance multiplier=%g)', tweak ) title( main=main ) ``` These colors are a better match to those in the test kit. ## References


## Session Information
```{r, echo=FALSE, results='asis'}
sessionInfo()
```