amt
This vignette briefly introduces how one can fit a Resource-Selection
Function (RSF) with the amt
package. We will be using the
example data of one red deer from northern Germany and one covariate: a
forest cover map.
First we load the required libraries and the relocation data (called
deer
)
## # A tibble: 826 × 4
## x_ y_ t_ burst_
## * <dbl> <dbl> <dttm> <dbl>
## 1 4314068. 3445807. 2008-03-30 00:01:47 1
## 2 4314053. 3445768. 2008-03-30 06:00:54 1
## 3 4314105. 3445859. 2008-03-30 12:01:47 1
## 4 4314044. 3445785. 2008-03-30 18:01:24 1
## 5 4313015. 3445858. 2008-03-31 00:01:23 1
## 6 4312860. 3445857. 2008-03-31 06:01:45 1
## 7 4312854. 3445856. 2008-03-31 12:01:11 1
## 8 4312858. 3445858. 2008-03-31 18:01:55 1
## 9 4312745. 3445862. 2008-04-01 00:01:24 1
## 10 4312651. 3446024. 2008-04-01 06:00:54 1
## # ℹ 816 more rows
Next, we have to get the environmental covariates. A forest layer is
included in the package. Note, that this a regular
SpatRast
.
Before fitting a RSF we have to do some data preparation. We have to
generate random points, points that we think the animal could have used.
The random points define the availability domain. In amt
the function random_points
is designed to do just that. The
function can be used in 3 different ways, depending to the type of
object that is passed to the function call.
track_*
(such as the deer
object) can be
passed to the function random_points
. The function then
calculates a home range (the home-range estimator can be controlled with
argument hr
). Within this home range n
random
points are generated. The default value of n
is ten times
the number of present points.hr
-object (i.e., the result of a home-range
estimation in amt
) is passed to random_points
,
points are generated within the home range. This allows to generate
random points within any home range that was previously estimated in
amt
. Note, that this could be a home range of multiple
animals. In this case, the function random_points
has one
additional argument called presence
. This argument takes a
trk_*
with the presence points and adds these points for
convenience to the random points.SpatialPolygons*
-object or sf
-object.
The latter must contain POLYGON
s or
MULTIPOLYGON
s as features. This can be useful in situation
where a home range needs to be buffered, or when other geographical
features are considered as the availability domain. As before, this
method for random_points
also takes the argument
presence
to optionally add the observed points to the
output.Lets now illustrate the three different situations. First we take
random points from a track_xy
With the argument n
we can control the number of random
points (remember that the default is ten times as many points as we
observed points).
Next, we can create random point within a home range, that we estimated before.
Here, we can also add the observed points:
Finally, we can work with the home range and for example a buffer and then generate random points within the this new polygon.
hr <- hr_mcp(deer) |> hr_isopleths() |>
sf::st_buffer(dist =3e4) # add a 30km buffer
r1 <- random_points(hr, n = 500)
plot(r1)
And we can also add the observed points.
hr <- hr_mcp(deer) |> hr_isopleths() |>
sf::st_buffer(dist =3e4) # add a 30km buffer
r1 <- random_points(hr, n = 500, presence = deer)
plot(r1)
Of course we are not restricted to the sf::st_buffer
function. All geometric operations from the sf
package can
be used to generate arbitrarily complex availability domains.
Now all pieces are there to fit a RSF. We will use
fit_rsf
, which is just a wrapper around
stats::glm
with
family = binomial(link = "logit")
.
##
## Call:
## stats::glm(formula = formula, family = stats::binomial(link = "logit"),
## data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.45454 0.04404 -55.74 < 2e-16 ***
## forest 0.57582 0.07920 7.27 3.59e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5535.8 on 9085 degrees of freedom
## Residual deviance: 5486.1 on 9084 degrees of freedom
## AIC: 5490.1
##
## Number of Fisher Scoring iterations: 5
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.3.2 (2023-10-31)
## os macOS Sonoma 14.4
## system aarch64, darwin20
## ui X11
## language (EN)
## collate C
## ctype en_US.UTF-8
## tz Europe/Berlin
## date 2024-04-01
## pandoc 3.1.11.1 @ /usr/local/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## amt * 0.2.2.0 2024-04-01 [1] local
## backports 1.4.1 2021-12-13 [3] CRAN (R 4.3.0)
## bslib 0.6.1 2023-11-28 [3] CRAN (R 4.3.1)
## cachem 1.0.8 2023-05-01 [3] CRAN (R 4.3.0)
## checkmate 2.3.1 2023-12-04 [3] CRAN (R 4.3.1)
## class 7.3-22 2023-05-03 [3] CRAN (R 4.3.2)
## classInt 0.4-10 2023-09-05 [3] CRAN (R 4.3.0)
## cli 3.6.2 2023-12-11 [3] CRAN (R 4.3.1)
## codetools 0.2-19 2023-02-01 [3] CRAN (R 4.3.2)
## colorspace 2.1-0 2023-01-23 [3] CRAN (R 4.3.0)
## data.table 1.15.2 2024-02-29 [3] CRAN (R 4.3.1)
## DBI 1.2.2 2024-02-16 [3] CRAN (R 4.3.1)
## digest 0.6.35 2024-03-11 [3] CRAN (R 4.3.1)
## dplyr * 1.1.4 2023-11-17 [3] CRAN (R 4.3.1)
## e1071 1.7-14 2023-12-06 [3] CRAN (R 4.3.1)
## evaluate 0.23 2023-11-01 [3] CRAN (R 4.3.1)
## fansi 1.0.6 2023-12-08 [3] CRAN (R 4.3.1)
## farver 2.1.1 2022-07-06 [3] CRAN (R 4.3.0)
## fastmap 1.1.1 2023-02-24 [3] CRAN (R 4.3.0)
## generics 0.1.3 2022-07-05 [3] CRAN (R 4.3.0)
## ggforce 0.4.1 2022-10-04 [3] CRAN (R 4.3.0)
## ggplot2 * 3.4.4 2023-10-12 [3] CRAN (R 4.3.1)
## ggraph * 2.1.0 2022-10-09 [3] CRAN (R 4.3.0)
## ggrepel 0.9.5 2024-01-10 [3] CRAN (R 4.3.1)
## glue 1.7.0 2024-01-09 [3] CRAN (R 4.3.1)
## graphlayouts 1.1.0 2024-01-19 [3] CRAN (R 4.3.1)
## gridExtra 2.3 2017-09-09 [3] CRAN (R 4.3.0)
## gtable 0.3.4 2023-08-21 [3] CRAN (R 4.3.0)
## highr 0.10 2022-12-22 [3] CRAN (R 4.3.0)
## htmltools 0.5.7 2023-11-03 [3] CRAN (R 4.3.1)
## igraph 2.0.1.1 2024-01-30 [3] CRAN (R 4.3.1)
## jquerylib 0.1.4 2021-04-26 [3] CRAN (R 4.3.0)
## jsonlite 1.8.8 2023-12-04 [3] CRAN (R 4.3.1)
## KernSmooth 2.23-22 2023-07-10 [3] CRAN (R 4.3.2)
## knitr 1.45 2023-10-30 [3] CRAN (R 4.3.1)
## labeling 0.4.3 2023-08-29 [3] CRAN (R 4.3.0)
## lattice 0.22-5 2023-10-24 [3] CRAN (R 4.3.1)
## lifecycle 1.0.4 2023-11-07 [3] CRAN (R 4.3.1)
## lubridate 1.9.3 2023-09-27 [3] CRAN (R 4.3.1)
## magrittr 2.0.3 2022-03-30 [3] CRAN (R 4.3.0)
## MASS 7.3-60.0.1 2024-01-13 [3] CRAN (R 4.3.1)
## Matrix 1.6-5 2024-01-11 [3] CRAN (R 4.3.2)
## munsell 0.5.0 2018-06-12 [3] CRAN (R 4.3.0)
## pillar 1.9.0 2023-03-22 [3] CRAN (R 4.3.0)
## pkgconfig 2.0.3 2019-09-22 [3] CRAN (R 4.3.0)
## polyclip 1.10-6 2023-09-27 [3] CRAN (R 4.3.1)
## proxy 0.4-27 2022-06-09 [3] CRAN (R 4.3.0)
## purrr 1.0.2 2023-08-10 [3] CRAN (R 4.3.0)
## R6 2.5.1 2021-08-19 [3] CRAN (R 4.3.0)
## rbibutils 2.2.16 2023-10-25 [3] CRAN (R 4.3.1)
## Rcpp 1.0.12 2024-01-09 [3] CRAN (R 4.3.1)
## Rdpack 2.6 2023-11-08 [3] CRAN (R 4.3.1)
## rlang 1.1.3 2024-01-10 [3] CRAN (R 4.3.1)
## rmarkdown 2.25 2023-09-18 [3] CRAN (R 4.3.1)
## rstudioapi 0.15.0 2023-07-07 [3] CRAN (R 4.3.0)
## sass 0.4.8 2023-12-06 [3] CRAN (R 4.3.1)
## scales 1.3.0 2023-11-28 [3] CRAN (R 4.3.1)
## sessioninfo 1.2.2 2021-12-06 [3] CRAN (R 4.3.0)
## sf 1.0-16 2024-03-24 [3] CRAN (R 4.3.1)
## survival 3.5-7 2023-08-14 [3] CRAN (R 4.3.2)
## terra 1.7-71 2024-01-31 [3] CRAN (R 4.3.1)
## tibble 3.2.1 2023-03-20 [3] CRAN (R 4.3.0)
## tidygraph * 1.3.1 2024-01-30 [3] CRAN (R 4.3.1)
## tidyr 1.3.1 2024-01-24 [3] CRAN (R 4.3.1)
## tidyselect 1.2.1 2024-03-11 [3] CRAN (R 4.3.1)
## timechange 0.3.0 2024-01-18 [3] CRAN (R 4.3.1)
## tweenr 2.0.2 2022-09-06 [3] CRAN (R 4.3.0)
## units 0.8-5 2023-11-28 [3] CRAN (R 4.3.1)
## utf8 1.2.4 2023-10-22 [3] CRAN (R 4.3.1)
## vctrs 0.6.5 2023-12-01 [3] CRAN (R 4.3.1)
## viridis 0.6.4 2023-07-22 [3] CRAN (R 4.3.0)
## viridisLite 0.4.2 2023-05-02 [3] CRAN (R 4.3.0)
## withr 3.0.0 2024-01-16 [3] CRAN (R 4.3.1)
## xfun 0.41 2023-11-01 [3] CRAN (R 4.3.1)
## yaml 2.3.8 2023-12-11 [3] CRAN (R 4.3.1)
##
## [1] /private/var/folders/ln/h3zng0fs2pq7mhn_hzn0d8x00000gn/T/Rtmphl5CVm/Rinst6cb5562535ee
## [2] /private/var/folders/ln/h3zng0fs2pq7mhn_hzn0d8x00000gn/T/RtmpgKr8k0/temp_libpath6a0129d1adcf
## [3] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
##
## ──────────────────────────────────────────────────────────────────────────────