--- title: "Climatology Lab TerraClimate" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Climatology Lab TerraClimate} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} date: "`r Sys.Date()`" author: "Mitchell Manware" --- ```{r setup, include = FALSE} # packages knitr::opts_chunk$set( collapse = TRUE, comment = "" ) library(amadeus) ``` This vignette demonstrates how to download, process, and calculate covariates from the Climatology Lab's [TerraClimate](https://www.climatologylab.org/terraclimate.html) dataset using `amadeus` functions. Details are provided for each function's parameters and outputs. The examples utilize monthly wind speed data. See https://www.climatologylab.org/wget-terraclimate.html for full variable names and acronyms. The messages returned by `amadeus` functions have been omitted for brevity. ### Download Start by downloading the netCDF data files with `download_data`. * `dataset_name = "terraclimate"`: TerraClimate dataset name. * `variable = "Wind Speed"`: wind speed variable name. * `year = c(2021, 2022)`: years of interest. * `directory_to_save = dir`: directory to save the downloaded files. * `acknowledgement = TRUE`: acknowledge that the raw data files are large and may consume lots of local storage. * `download = TRUE`: download the data files. * `remove_command = TRUE`: remove the temporary command file used to download the data. * `hash = TRUE`: generate unique SHA-1 hash for the downloaded files. ```{r, eval = FALSE} dir <- tempdir() amadeus::download_data( dataset_name = "terraclimate", variable = "Wind Speed", year = c(2021, 2022), directory_to_save = dir, acknowledgement = TRUE, download = TRUE, remove_command = TRUE, hash = TRUE ) ``` ```{r, echo = FALSE} cat('[1] "344cddba906371b701f661ccebeef3f427b2d8ec"') ``` Check the downloaded netCDF files. ```{r, eval = FALSE} list.files(dir, recursive = TRUE, pattern = "ws") ``` ```{r, echo = FALSE} cat('[1] "ws/ws_2021.nc" "ws/ws_2022.nc"') ``` ### Process Import and process the downloaded netCDF files with `process_covariates`. **Parameters:** * `covariate = "terraclimate"`: TerraClimate dataset name. * `variable = "Wind Speed"`: wind speed variable name. * `date = c("2021-12-28", "2022-01-03")`: date range of interest. * `path = paste0(dir, "/ws")`: directory containing the downloaded files. ```{r, eval = FALSE} ws_process <- amadeus::process_covariates( covariate = "terraclimate", variable = "Wind Speed", date = c("2021-12-28", "2022-01-03"), path = file.path(dir, "/ws") ) ``` Check the processed `SpatRaster` object. **Note** Climatology Lab TerraClimate is a monthly dataset, so the `SpatRaster` contains two layers for December 2021 and January 2022. ```{r, eval = FALSE} ws_process ``` ```{r, echo = FALSE} cat('class : SpatRaster dimensions : 4320, 8640, 2 (nrow, ncol, nlyr) resolution : 0.04166667, 0.04166667 (x, y) extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) coord. ref. : +proj=longlat +ellps=WGS84 +no_defs sources : ws_2021.nc ws_2022.nc varnames : ws (wind speed) ws (wind speed) names : ws_202112, ws_202201 unit : m/s, m/s time (days) : 2021-12-01 to 2022-01-01 ') ``` ```{r, eval = FALSE} terra::plot(ws_process[[1]]) ``` ![](images/ws_process.png){style="display: block; margin-left: auto; margin-right: auto;"} ### Calculate covariates Covariate calculation with Climatology Lab TerraClimate data is undergoing updates.