## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(warning = FALSE) knitr::opts_chunk$set(message = FALSE) rmarkdown.html_vignette.check_title = FALSE library(aelab) library(readxl) library(tibble) library(lubridate) library(stats) library(dplyr) library(openxlsx) ## ----------------------------------------------------------------------------- # The provided file is a raw data file downloaded from # the LI-COR Trace Gas Analyzer ghg_data_path <- system.file("extdata", "ch4.xlsx", package = "aelab", mustWork = T) ch4 <- tidy_ghg_analyzer(ghg_data_path, "ch4") ch4[c(1:3), ] ## ----------------------------------------------------------------------------- # The analyzer's time was assumed to be # 15 minutes and 30 seconds faster than real time ch4 <- convert_time(ch4, min = -15, sec = 30) ch4[c(1:3), c(5:6)] ## ----------------------------------------------------------------------------- ref_data_path <- system.file("extdata", "reference.xlsx", package = "aelab", mustWork = T) ref <- read_excel(ref_data_path) ref ## ----------------------------------------------------------------------------- calculate_regression(ch4, ghg = "CH4", reference_time = ref$date_time, duration_minutes = 7, num_rows = 300) ## ----------------------------------------------------------------------------- calculate_regression(ch4, ghg = "CH4", reference_time = as.POSIXct("2023-03-11 07:32:00", tz = "UTC")) ## ----------------------------------------------------------------------------- results_ch4 <- calculate_regression(ch4, ghg = "CH4", reference_time = as.POSIXct("2023-03-11 07:32:00", tz = "UTC")) flux_ch4 <- data.frame( slope = results_ch4$slope, area = 1, # in square meter volume = 1, # in litre temp = 1) # in celcius calculate_ghg_flux(flux_ch4) ## ----------------------------------------------------------------------------- hobo_data_path <- system.file("extdata", "ex_hobo.csv", package = "aelab") do <- process_hobo(hobo_data_path, no_hobo = "code_for_logger") do[c(1:3), ] ## ----------------------------------------------------------------------------- weather_data_path <- system.file("extdata", "ex_weather.csv", package = "aelab") weather <- process_weather(weather_data_path, date = "2024-04-10", zone = "zone_A") weather[c(1:5), ] ## ----------------------------------------------------------------------------- info_data_path <- system.file("extdata", "info.xlsx", package = "aelab") info <- process_info(info_data_path) info ## ----------------------------------------------------------------------------- data <- merge(weather, do, by = "date_time") merged_df <- data %>% inner_join(info, by = c("zone", "no_hobo")) merged_df[c(1:3), ] plot_hobo(merged_df) ## ----------------------------------------------------------------------------- calculate_do(merged_df)