Package 'WSGeometry’

October 12, 2022
Type Package
Title Geometric Tools Based on Balanced/Unbalanced Optimal Transport
Version 1.2.1
Date 2021-12-10
Author Florian Heinemann [aut, cre], Nicholas Bonneel [ctb]
Maintainer Florian Heinemann florian.heinemann@uni-goettingen.de
Description Includes a variety of methods to compute objects related to the 'Wasserstein dis-tance' (also known as 'Kantorovich distance' or 'Earth-Mover distance'). The main ef-fort of this package is to allow for computations of 'Wasserstein barycenter' using regu-larised, unregularised and stochastic methods. It also provides convenient wrap-pers to call the 'transport' package with more general inputs. Handy visual tools are pro-vided to showcase, barycenters, animations of optimal transport geodesics and anima-tions of principal components in the 'Wasserstein space'. It also includes tools to compute 'Kan-torovich-Rubinstein' distances and barycenters.
License GPL-3
Encoding UTF-8
Imports Rcpp, transport, RSpectra, expm, plot3D, imager, grDevices,stats, graphics, lpSolve, Matrix
Suggests magick, mvtnorm, Rsymphony
LinkingTo RcppArmadillo, Rcpp
RoxygenNote 7.1.2
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-12-14 23:00:10 UTC
R topics documented:
barycenter_lp 2
bin2d 3
frechet_func 4
geodesic_pos 4
grid_positions 5
kr_bary 6
kr_dist 8
location_scatter_bary 9
multi_marginal 11
plotGeodesic 12
smear 15
wasserstein_bary 16
ws_bary_maaipm 20
ws_dist 23
ws_logpca 24
Index 26
barycenter_lp Exact computation of 2-Wasserstein barycenters in $R^{\wedge} d$ using linear programming

Description

This function solves the 2-Wasserstein barycenter problem of N finitely supported input measures explicitly by solving the corresponding linear program.

Usage

barycenter_lp(pos.list, weights.list, frechet.weights = NULL)

Arguments

pos.list \begin{tabular}{l}
A list of Mxd matrices, specifying the positions of the data measures.

weights.list

A list of vectors with non-negative entries and identical total sum specifying the

weights of the data measures.
\end{tabular}

A vector of positive entries summing to one specifying the weights of each data measure in the Fréchet functional.

Value

A list with two entries. The first entry contains the positions of the computed barycenter and the second entry contains the corresponding weights.

References

E Anderes, S Borgwardt, and J Miller (2016). Discrete Wasserstein barycenters: Optimal transport for discrete data. Mathematical Methods of Operations Research, 84(2):389-409.
S Borgwardt and S Patterson (2020). Improved linear programs for discrete barycenters. Informs Journal on Optimization 2(1):14-33.

Examples

```
pos.list<-vector("list",4)
weights.list<-vector("list",4)
pos.list[[1]]<-matrix(c(0,0,1,1,1,0,0,1),nrow=4,ncol=2)/10
pos.list[[2]]<-matrix(c(9, 9, 10,10,10, 9, 9, 10),nrow=4,ncol=2)/10
pos.list[[3]]<-matrix(c(9,9,10,10,1,0,0,1),nrow=4,ncol=2)/10
pos.list[[4]]<-matrix(c(0,0,1,1,10,9,9,10),nrow=4,ncol=2)/10
plot(0, 0, xlab = "", ylab = "", type = "n", xlim = c(0, 1), ylim = c(0, 1))
for(i in 1:4)
    points(pos.list[[i]][,1], pos.list[[i]][,2], col = i)
weights.list[[1]]<-rep(1/4,4)
weights.list[[2]]<-rep(1/4,4)
weights.list[[3]]<-rep(1/4,4)
weights.list[[4]]<-rep(1/4,4)
bary<-barycenter_lp(pos.list,weights.list)
points(bary$positions[,1],bary$positions[,2], col = "orange", pch = 13)
```

bin2d
Bin data onto a grid.

Description

Bin data onto a equidistant grid in $[0,1]^{\wedge} 2$.

Usage

bin2d(data.pos, data.weights, gridsize, turn = FALSE)

Arguments

data.pos	A Mx2 matrix specifying the positions of the data measure.
data.weights	A list of vectors of the same size as the number of rows in data.pos. All entries in the vector must be non-negative and the entries in the vector must sum to one.
gridsize	A vector of two integers specifying the dimensions of the grid, which the data should be binned to.
turn	A boolean specifying whether the output should be rotated to keep the previous orientation when the matrix is plotted with the image function.

Value

A matrix containing the weights of the measure in each bin.

frechet_func | Compute the Frechet functional/The objective value of the barycenter |
| :--- |
| problem |

Description

This function computes the objective value of the barycenter problem for a given measure and a given dataset of measures.

Usage

frechet_func(bary, data)

Arguments

bary An object representing a measure, for which the Frechet value should be computed. Should be one of the following: A matrix, representing an image; A path to a file containing an image; A wpp-object; A pp-object; A list containing an entry named 'positions' with the support of the measure and an entry named 'weights' containing the weights of the support points; A list containing en entry named 'positions" specifying the support of a measure with uniform weights.
data A list of objects which should be compared to bary. Each element should be one of the following: A matrix, representing an image; A path to a file containing an image; A wpp-object; A pp-object; A list containing an entry named 'positions' with the support of the measure and an entry named 'weights' containing the weights of the support points; A list containing en entry named 'positions" specifying the support of a measure with uniform weights.

Value

A real number specifying the Frechet value of the input object for the given dataset.

```
geodesic_pos Compute Wasserstein geodesics
```


Description

Computes the geodesic between two measures P1 and P2 in arbitrary dimensions at given timepoints.

Usage

geodesic_pos(P1, P2, p = 2, steps)

Arguments

\(\left.$$
\begin{array}{ll}\text { P1 } & \begin{array}{l}\text { One of the following: A matrix, representing an image; A file name containing } \\
\text { an image; A wpp-object. }\end{array}
$$

One of the following: A matrix, representing an image; A file name containing

an image; A wpp-object.\end{array}\right]\)| A real number $>=1$ specifying the exponent of the Wasserstein distance. |
| :--- |
| p | | A vector of numbers in $[0,1]$ describing the time points at which the geodesic |
| :--- |
| should be evaluated. |

Value

A list of the same length as steps where each element is a wpp-object describing the value of the geodesic at the corresponding times in steps.

Examples

```
    U<-runif(20)
    U<-U/sum(U)
    pos<-matrix(runif(2*20),nrow=20,ncol=2)
    P1<-transport::wpp(pos,U)
    U<-runif(20)
    U<-U/sum(U)
    pos<-matrix(runif(2*20),nrow=20,ncol=2)
    P2<-transport::wpp(pos,U)
    geodesic<-geodesic_pos(P1,P2,p=2,seq(0,1,0.1))
    ## Set the image and/or gif flags to TRUE to run the example.
    ## CRAN policy prevents examples from generating files in the working directory,
    ## so this had to be disabled.
    plotGeodesic(geodesic,File="GeodesicR2",images=FALSE,gif=FALSE)
```

 grid_positions Generate a \(2 d\) grid in \([0,1]^{\wedge} 2\) of given size.

Description

Generates a matrix containing the positions of the points of an equidistant 2 d grid in $[0,1]^{\wedge} 2$.

Usage

grid_positions(n, m)

Arguments

n
m

Integer giving one dimension of the grid.
integer giving the other dimension of the grid.

Value

A (nm)x2 grid containing the positions of the desired grid.

Description

This is a wrapper function for multiple methods to solve the (2,C)-barycenter problem. It contains three methods: "fixed": This function finds the best approximation of the (2,C)-barycenter problem of N finitely supported input measures on a given support set using a modified MAAIPM algorithm to solve the corresponding linear program. "free": This functions finds an approximation of the 2-Wasserstein barycenter using the MAAIPM method by alternating between updating weights and positions of a candidate barycenter. "multiscale": This finds the best approximation of the (2,C)-barycenter problem of N finitely supported input measures by using a multi-scale version of a modified MAAIPM method. Given a starting grid it solves the fixed support (2,C)-barycenter problem on this grid. Then, the grid is refined, by splitting each grid point into 4 new ones. Afterwards, all grids points below a certain threshold of mass are removed from the support. This procedure is repeated until a prespecified resolution is reached. Note, the generated grids are assumed to be in $[0,1]^{\wedge} 2$.

Usage

```
kr_bary(
    data.list,
    C,
    method = "fixed",
    support,
    wmaxIter,
    pmaxIter,
    return_type = "default",
    thresh = 10^-3,
    threads = 1
    )
```


Arguments

data.list A list of objects from which the barycenter should be computed. Each element should be one of the following: A matrix, representing an image; A path to a file containing an image; A wpp-object; A list containing an entry named 'positions' with the support of the measure and an entry named 'weights' containing the weights of the support points; A list containing en entry named 'positions" specifying the support of a measure with uniform weights.

C A real number specifying the unbalanced optimal transport parameter used in the Kantorovich- Rubinstein distance.
method A string determining which method is used. The available options "fixed", "free" and "multiscale" are described above.

support	The role of this parameter changes depending of the method used. "fixed": This
is a $\mathrm{d} x \mathrm{M}$ matrix containing the positions of the fixed-support of the barycenter	
in $\mathrm{R}^{\wedge} \mathrm{d}$. "free": This is a d x M matrix containing the initial positions of the	
barycenter approximation. "multiscale": A vector with four entries. The first	
two are integers giving the resolution of the initial grid. The third entry is another	
integer specifying how many times the grid should be refined. The fourth entry	
is a real number specifying the threshold under which mass is considered to be	
zero.	
An integer specifying the maximum number of weight iterations to be per-	
formed.	
wmaxIter	An integer specifying the maximum number of weight iterations to be performed for the "free"- method.
pmaxIter	A string specifying the format in which the barycenter should be returned. For all methods the options "default" (giving a list with an entry 'positions‘ contain- ing the support of the barycenter and an entry 'weights‘ containing the weights of the barycenter) and "wpp" (giving a wpp-object) are available. Additionally, for the "fixed" method there is the type "vec" which returns a vector of length M, containing the weights of the barycenter on the given support and for the
"multiscale" method there is the option "mat" which returns the barycenter in	

Value

For details on the returned value refer to the parameter return_type.

References

Ge, DongDong, et al. "Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem." Advances in Neural Information Processing Systems 32 (2019): 6894-6905. KantorovichRubinstein distance and barycenter for finitely supported measures: Foundations and Algorithms; Heinemann, Klatt and Munk; https://arxiv.org/pdf/2112.03581.pdf.

Examples

```
#Generate a dataset consisting of measures supported on discretized nested ellipses.
N<-5 #The number of measures generated
M<-20 #The number of points each ellipse is discretized into
C<-2 #The parameter of the Kantorovich-Rubinstein distance
data.list<-vector("list",N)
set.seed(42)
nest.vec<-rep(0,N) #A vector containing the number of ellipses in the data measures.
max.ell<-3 #The maximum number of ellipses in each measure. The number is chosen
#uniformly between 1 and this value.
```

```
#This loop actually generates the measures for the example.
for (i in 1:N){
    pos.full<-matrix(0,0,2)
    nesting.depth<-ceiling(runif(1,0,max.ell))
    nest.vec[i]<-nesting.depth
    for (k in 1:nesting.depth){
            t.vec<-seq(0, 2*pi,length.out=M)
            pos<-cbind(cos(t.vec)*runif(1,0.2,1),sin(t.vec)*runif(1,0.2,1))/(3^(k-1))
            theta<-runif(1,0,2*pi)
            rotation<-matrix(c(cos(theta),sin(theta),-1*sin(theta), cos(theta)),2,2)
            pos.full<-rbind(pos.full,pos%*%rotation)
    }
    W<-rep(1,M*nesting.depth)
    data.list[[i]]<-transport::wpp((pos.full+1)/2,W)
}
#Using the multiscale method
system.time(bary.ms<-WSGeometry::kr_bary(data.list, C,method="multiscale",
support=c(8, 8, 3,10^-2),wmaxIter=100,return_type="mat", thresh=6*10^-4, threads=1))
#Using the fixed support method
support<-t(WSGeometry::grid_positions(20,20))
system.time(bary.fixed<-WSGeometry::kr_bary(data.list,C,method="fixed",
support=support,wmaxIter=100,return_type="wpp", thresh=6*10^-4, threads=1))
#Using the free support method
support<-t(WSGeometry::grid_positions(8,8))
system.time(bary.free<-WSGeometry::kr_bary(data.list,C,method="free",
support=support,wmaxIter=100, pmaxIter=25,return_type="wpp",thresh=8*10^-4,threads=1))
#The outputs can be conveniently visualised using the image function for the "mat" output
#and the plot-method for the wpp-objects provided by the transport package.
image(bary.ms)
plot(bary.fixed)
plot(bary.free)
```

kr_dist Compute the p-Kantorovich-Rubinstein distance between two measures of possibly unequal total mass.

Description

This function constructs the corresponding problem and solves it suing the transport-function.

Usage

$$
\text { kr_dist(A, B, } \mathrm{p}=2, \mathrm{C})
$$

Arguments

A

B One of the following: A matrix, representing an image; A file name containing an image; A wpp-object.
p

C
One of the following: A matrix, representing an image; A file name containing an image; A wpp-object.

A positive real number specifying the order of the Kantorovich-Rubinstein distance.

A positive real number specifying the cost parameter of the Kantorovich-Rubinstein distance.

Value

A list containing an entry "distance" (specifying the KR distance between the two measures) and an entry "plan" containing an optimal plan for the unbalanced optimal transport problem.

References

Kantorovich-Rubinstein distance and barycenter for finitely supported measures: Foundations and Algorithms; Florian Heinemann, Marcel Klatt, Axel Munk; https://arxiv.org/pdf/2112.03581.pdf.

Examples

```
M<-1000
```

W1<-runif(M)
W2<-runif(M)
pos1<-matrix(runif($M * 2$) , M, 2)
pos2<-matrix(runif(M*2), M,2)
wpp1<-transport:: wpp(pos1,W1)
wpp2<-transport::wpp(pos2,W2)
system.time(res<-wSGeometry:::kr_dist(wpp1,wpp2,2,2))

$$
\begin{aligned}
& \text { location_scatter_bary } \begin{array}{l}
\text { Computes the 2-Wasserstein barycenter of location-scatter families of } \\
\text { measures }
\end{array}
\end{aligned}
$$

Description

This function solves the 2-Wasserstein barycenter problem of N measures from a location-scatter family, where each data distribution is given by a mean vector and a covariance matrix. In particular, this can be used to compute the barycenter of Gaussian distributions.

Usage

```
location_scatter_bary(
    means,
    cov,
    thresh = 10^(-5),
    maxiter = 100,
    showIter = FALSE
)
```


Arguments

$$
\begin{array}{ll}
\text { means } & \text { A list of mean vectors of the elements of the location-scatter family. } \\
\text { cov } & \begin{array}{l}
\text { A list of semipositive-definite covariance matrices of the elements of the location- } \\
\text { scatter family. }
\end{array} \\
\text { thresh } & \begin{array}{l}
\text { A real number specifying the threshold for terminating the iterative algorithm. } \\
\text { maxiter }
\end{array} \\
\begin{array}{l}
\text { An integer specifying after how many iterations the algorithm should be termi- } \\
\text { nated even if the specified threshold has not been reached. }
\end{array} \\
\text { showIter } & \begin{array}{l}
\text { A boolean specifying whether the number of performed iterations should be } \\
\text { shown at the end. }
\end{array}
\end{array}
$$

Value

A list of two elements. The first element "mean" gives the mean vector of the barycenter measure. The second elemenent "cov" gives the covariance matrix of the barycenter measure.

References

PC Álvarez-Esteban, E del Barrio, JA Cuesta-Albertos, and C Matrán (2016). A fixed-point approach to barycenters in Wasserstein space. J. Math. Anal. Appl., 441(2):744-762.
Y Zemel and VM Panaretos (2019). Fréchet Means and Procrustes Analysis in Wasserstein Space. Bernoulli 25(2):932-976.

Examples

```
#One dimensional example
mean.list<-list(5,15)
var.list<-list(1,4)
res<-location_scatter_bary(mean.list,var.list)
x<-seq(0, 22,10^-4)
y1<-dnorm(x,mean=5,sd=1)
y2<-dnorm(x,mean=15,sd=2)
y3<-dnorm(x,mean=res$mean,sd=sqrt(res$cov))
plot(x,y1,type="l",main = "Barycenter of two 1-d Gaussian distributions",
ylab = "density",col="blue")
lines(x,y2,col="green")
lines(x,y3,col="red")
legend(15,0.4, legend=c("N(5,1)", "N(15,4)","Barycenter"),
    col=c("blue", "green", "red"),lty=1, cex=0.9)
```

```
#two dimensional example
# packages graphics and mvtnorm are required to run this example
set.seed(2898581)
mean.list <- list(c(0,0), c(0,0), c(0,0))
COV <- 0.3 + rWishart(3, df = 2, Sigma = diag(2))
cov.list <- list(COV[,, 1], COV[,, 2], COV[,, 3])
res<-location_scatter_bary(mean.list, cov.list)
x <- y <- seq(-3, 3, .1)
z <- array(0.0, dim = c(length(x), length(y), 4))
for(i in seq_along(x))
    for(j in seq_along(y))
    {
        for(n in 1:3)
            z[i, j, n] <- mvtnorm::dmvnorm(c(x[i], y[j]), sigma = COV[, , n])
        z[i, j, 4] <- mvtnorm::dmvnorm(c(x[i], y[j]), sigma = res$cov)
    }
op <- par(mfrow = c(2, 2), mai = c(0, 0, 0, 0))
for(n in 1:3)
{
    graphics::persp(x, y, z[, , n], theta = 30, phi = 30, expand = 0.5, col = "lightblue",
    zlab = "", ticktype = "detailed", shade = .75, lphi = 45, ltheta = 135)
    text(x = 0, y = 0.2, labels = paste("COV[,, ", n, "]", sep = ""))
}
graphics::persp(x, y, z[, , 4], theta = 30, phi = 30, expand = 0.5, col = "red", zlab = "",
ticktype = "detailed", shade = .75, lphi = 45, ltheta = 135)
text(x = 0, y = 0.2, labels = "barycenter")
par(op)
```

multi_marginal Solve the multimarginal optimal transport problem by linear program-
ming

Description

Solves the N -fold multimarginal optimal transport problem between N specified measures and a specified cost. This is essentially a convenient wrapper function that builds and solves the corresponding linear program.

Usage

multi_marginal(weights, costA)

Arguments

weights A list of vectors specifying the weights of the marginal distributions. These vectors do not need to be of the same size.
costA An array where the entry (i1,i2,..,iN) specifies the value of the cost functional for the point $i 1$ in the first measure, $i 2$ in the second measure and so on.

Value

A list with two entries. The first entry contains the optimal multicoupling in array form, and the second entry contains the cost of the optimal solution.

Examples

```
W<-list(rep (1, 10),rep (1, 10),rep (1, 10))
C<-array(runif(10^3),c(10,10,10))
MM<-multi_marginal(W,C)
```

plotGeodesic Plot previously computed Wasserstein geodesics

Description

This function generates either a sequence of images or a gif displaying the input optimal transport geodesic.

Usage

```
plotGeodesic(
    Geodesic,
    method = "default",
    images = FALSE,
    gif = FALSE,
    File = "Geodesic",
    resolution = c(400, 400),
    dotsize = 2,
    gridsize = c(100, 100),
    out.col = grey(0:1000/1000),
    splitrange = c(1, 1),
    turn = FALSE,
    phi = 40,
    theta = 40,
    fps = NULL
)
```


Arguments

Geodesic	A list of measures in $R^{\wedge} 2$ or $R^{\wedge} 3$ corresponding to the discretized time steps of the geodesic. Each entry in the list must be one of the following: a pp-object; a wpp-object; or a list containing an entry named 'positions' that is an Mxd matrix.
method	A string specifying the method used to plot each measure. The input "default" generates a scatterplot where the size of each point corresponds to its mass. The input "bin" maps the data to a grid of prespecified size to plot it as an image. The input "binSplit" also maps the data to a grid, but afterwards the mass of each pixel is split between all pixels in a specified range. This generates smoother output images.
images	A boolean specifying whether image files should be generated.
gif	A boolean specifying whether a gif should be generated. To use this option the ImageMagick software and the magick R package need to be installed. (see https://cran.r-project.org/web/packages/magick/vignettes/intro.html for details and instructions.)
File	A string specifying the prefix of all generated files.
resolution	A vector with two elements specifying the resolution of the output images.
dotsize	A positive number working as a multiplier on the size of the dots in the output generated by the default method.
gridsize	A vector with two elements specifying the size of the grid used for "bin" and "binSplit".
out.col	A colour vector, specifying the colour scheme used in the call of the image function when plotting the output of the "bin" and "binSplit" methods. See the documentation of the image function for more details.
splitrange	A vector of two positive integers specifying the number of pixels the mass of a point is shared with in the "binSplit" method. The first entry controls the horizontal direction and the second controls the vertical direction.
turn	A boolean specifying whether the image should be rotated to account for the output of the image function.
phi	A number specifying the viewing direction in the three dimensional method. It gives the colatitude of the plot.
theta	A number specifying the viewing direction in the three dimensional setting. It gives the azimuthal direction of the plot.
fps	A positive number specifying the number of frames per second in the output gif. The default adjusts the fps to output a gif file of length 10 seconds.

Value

This function does not provide any return value, but instead generates output files in the current working directory.

Examples

```
#2D-Example:
library(transport)
set.seed(420)
N<-2
supp.size<-10^2
L<-sqrt(supp.size)
d<-2
data.list<-vector("list",N)
image.list<-vector("list",N)
for (i in 1:N){
    t.vec<-seq(0,2*pi,length.out=supp.size)
    pos<-cbind(cos(t.vec)*runif(1,0.2,1),sin(t.vec)*runif(1,0.2,1))
    theta<-runif(1,0,2*pi)
    rotation<-matrix(c(cos(theta),sin(theta),-1*sin(theta),\operatorname{cos(theta)),2,2)}
    pos<-pos%*%rotation
    pos<-pos+1
    pos<-pos/2
    W<-rep(1/supp.size, supp.size)
    data.list[[i]]<-transport::wpp(pos,W)
}
Geo<-geodesic_pos(data.list[[1]],data.list[[2]],2, seq(0,1,0.1))
## Set the image and/or gif flags to TRUE to run the example.
## CRAN policy prevents examples from generating files in the working directory,
## so this had to be disabled.
plotGeodesic(Geo,File="TestGeodesicDefault",images=FALSE,gif=FALSE)
plotGeodesic(Geo,method="bin",File="TestGeodesicDefaultBin",images=FALSE,gif=FALSE)
plotGeodesic(Geo,method="binSplit",File="TestGeodesicDefaultBinSPlit",
images=FALSE,gif=FALSE)
#3D-Example:
#Functions to build the example measures
gen_torus<-function(M,R,r){
    theta<-seq(0,2*pi,length.out=M)
    phi<-seq(0,2*pi,length.out=M)
    G<-expand.grid(theta,phi)
    x<-(R+r*\operatorname{cos}(G[,1]))*\operatorname{cos}(G[,2])
    y<-(R+r*\operatorname{cos}(G[,1]))*\operatorname{sin}(G[,2])
    z<-r*sin(G[,1])
    return(cbind(x,y,z))
}
sq_norm<-function(v){
    return(sqrt(sum(v^2)))
}
normalize<-function(v){
    return(v/(sq_norm(v)))
}
rotate3D<-function(pos,axis,angle){
    R<-matrix(0, 3, 3)
    R[1]<-cos(angle)+axis[1]^2*(1-cos(angle))
    R[2]<-axis[1]*axis[2]*(1-cos(angle))+axis[3]*sin(angle)
    R[3]<-axis[3]*axis[1]*(1-cos(angle))-axis[2]*sin(angle)
```

```
    R[4]<-axis[1]*axis[2]*(1-cos(angle))-axis[3]*sin(angle)
    R[5]<-cos(angle)+axis[2]^2*(1-cos(angle))
    R[6]<-axis[2]*axis[3]*(1-cos(angle))+axis[1]*sin(angle)
    R[7]<-axis[1]*axis[3]*(1-cos(angle))+axis[2]*sin(angle)
    R[8]<-axis[2]*axis[2]*(1-cos(angle))-axis[1]*sin(angle)
    R[9]<-cos(angle)+axis[3]^2*(1-cos(angle))
    return(t(diag(c(2,3,1))%*%(R%*%t(pos))))
}
## Example
set.seed(123)
M<-40
U<-runif(1,0.5,1)
Torus<-gen_torus(M,U,min(U/2,runif(1)))
v<-normalize(runif(3))
Torus<-rotate3D(Torus,v,runif(1,0,2*pi))
Torus1<-Torus%*%diag(runif(3,1,3))
U<-runif(1,0.5,1)
Torus<-gen_torus(M,U,min(U/2,runif(1)))
v<-normalize(runif(3))
Torus<-rotate3D(Torus,v,runif(1,0,2*pi))
Torus2<-Torus%*%diag(runif(3,1,3))
L<-length(Torus)/3
Torus1<-transport::wpp(Torus1,rep(1/L,L))
Torus2<-transport::wpp(Torus2,rep(1/L,L))
geo<-geodesic_pos(Torus1,Torus2,p=2, seq(0,1,0.1))
## Set the image and/or gif flags to TRUE to run the example.
## CRAN policy prevents examples from generating files in the working directory,
## so this had to be disabled.
plotGeodesic(geo,File="3dGeodesic",images=FALSE,gif=FALSE)
```

Split the values of entries in a matrix between a specified area round it.

Description

Takes a matrix M and splits the value of the matrix at a given coordinate (i, j) with a rectangle of positions around it given by r 1 and r 2 . The position (i, j) will get its previous value divided by (r 1 x r 2) and the surrounding positions (r 1 in horizontal and r 2 in vertical direction) will have their entries increased by the same value.

Usage

smear (M, r1, r2)

Arguments

M
r1
r2

A matrix with real numbers as entries.
Integer specifying the range of the split in the horizontal direction.
Integer specifying the range of the split in the vertical direction.

Value

A matrix of the same dimensions as M , which had the mass split applied to all entries simultaneously.
wasserstein_bary Compute Wasserstein barycenters

Description

This function computes the Wasserstein barycenter of a list of suitable objects and returns the barycenter in a prespecified form.

Usage

```
wasserstein_bary(
    data.list,
    frechet.weights = NULL,
    method = "alternating",
    return_type = "wpp",
    supp.size = NULL,
    output.supp = NULL,
    shared = FALSE,
    sample.size = NULL,
    maxIter = 10,
    weights_maxIter = 100,
    pos_maxIter = 100,
    stepsize = 0.1,
    thresh = 10^(-12),
    regular = 10^-3,
    warmstart = TRUE,
    warmstartlength = 2,
    showIter = FALSE,
    threads = 1
)
```


Arguments

data.list
A list of objects of which the barycenter should be computed. Each element should be one of the following: A matrix, representing an image; A path to a file containing an image; A wpp-object; A pp-object; A list containing an entry named 'positions' with the support of the measure and an entry named 'weights' containing the weights of the support points; A list containing en entry named 'positions" specifying the support of a measure with uniform weights.
frechet.weights
A real vector summing to 1 , specifying the weights in the Frechet functional. Should be of the same length as data.list.

method	A string specifiying the method to be used. This also determines which of the other parameters are active/used in this function call. See details for the specific methods currently available.
return_type	A string specifying the format of the output. The currently available options are "default" (which gives list with entries 'positions' and 'weights'); "wpp"- which gives a wpp-object; and "image_mat" for a matrix of the same dimensions as the input matrices (only for the regular method).
A positive integer specifying the size of the support used to approximate the	
barycenter in the "alternating" method.	

Details

This is the main function of this package. It computes/approximates 2-Wasserstein barycenters using the different methods outlined in the following.
"lp". Here the barycenter problem can be posed as a linear program. This method builds and solves this linear program. While this gives exact solutions to the problem, this method is highly run-time extensive and should only be used on small datasets. (See Anderes et al. (2016) and Borgwardt \& Patterson (2020) for details).
"regular". This method solves the entropy-regularised fixed support barycenter problem. Here, a penalisation term is introduced to the problem, which yields a strictly convex problem that can be solved with Sinkhorn's algorithm (for details see Benamou et al. (2015)). Additionally, it is assumed that all the measures have the same support set, and instead of an exact (regularised) barycenter, the methods finds the best solution having the same support as the data. This is quite reasonable when the dataset consists of images and the barycenter should be an image as well. The choice of the regularisation parameter "regular" is a delicate issue. Large values reduce the runtime, but yield "blurry" barycenters. Small values yield sharper results, but have longer run-time and may cause numerical instabilities. The choice of this parameter depends on the dataset at hand, and will typically require tuning.
"fixed_support". This method computes the best approximation of the barycenter, which is supported on a pre-specified support set (as supplied by the parameter "output.support"). Contrary to the "regular" method, here this set does not need to coincide with any of the support sets of the data measures. See Cuturi \& Doucet (2014) for details.
"alternating". This method computes the best approximation of the barycenter with a certain support size. It alternates between finding the best positions for given weights and then finding the best weights for these positions. See Cuturi and Doucet (2014) for details.
"sampling". This method uses the SUA method of Heinemann et al. (2020) to generate a stochastic approximation of the barycenter. It replaces the original measures by empirical measures obtained from samples of size 'sample.size' from each data measure.
The unregularised optimal transport problems, which need to be solved for the iterative methods, without regularisation, in each iteration step, are solved using a fast network simplex implementation (which is a modification of the LEMON Library by Nicolas Bonneel).

References

E Anderes, S Borgwardt, and J Miller (2016). Discrete Wasserstein barycenters: Optimal transport for discrete data. Mathematical Methods of Operations Research, 84(2):389-409.
S Borgwardt and S Patterson (2020). Improved linear programs for discrete barycenters. Informs Journal on Optimization 2(1):14-33.
J-D Benamou, G Carlier, M Cuturi, L Nenna, and G Peyré (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing 37(2):A1111-A1138.
M Cuturi and A Doucet (2014). Fast Computation of Wasserstein Barycenters. Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):685-693.
F Heinemann, A Munk, and Y Zemel (2020). Randomised Wasserstein barycenter computation: Resampling with statistical guarantees. arXiv preprint.
N. Bonneel (2018). Fast Network Simplex for Optimal Transport.

Github repository, nbonneel/network_simplex.
N. Bonneel, M. van de Panne, S. Paris and W. Heidrich (2011). Displacement interpolation using Lagrangian mass transport. ACM Transactions on Graphics (SIGGRAPH ASIA 2011) 30(6).

Examples

```
##Basic Examples
#build list
K<-1
N<-4*K
M<-9
d<-2
```

```
data.list<-vector("list",N)
###image_mat
for (i in 1:K){
    U<-runif(M)
    U<-U/sum(U)
    data.list[[i]]<-matrix(U,sqrt(M))
}
#wpp
for (i in (K+1):(2*K)){
    U<-runif(M)
    U<-U/sum(U)
    pos<-matrix(runif(d*M),M,d)
    data.list[[i]]<-transport::wpp(pos,U)
}
#point pattern
for (i in (2*K+1):(3*K)){
    pos<-matrix(runif(d*M),M,d)
    data.list[[i]]<-list(positions=pos)
}
\#weighted point pattern
```

```
for (i in (3*K+1):(4*K)){
```

for (i in (3*K+1):(4*K)){
U<-runif(M)
U<-runif(M)
U<-U/sum(U)
U<-U/sum(U)
pos<-matrix(runif(d*M),M,d)
pos<-matrix(runif(d*M),M,d)
data.list[[i]]<-list(positions=pos,weights=U)
data.list[[i]]<-list(positions=pos,weights=U)
}
}
system.time(res1<-wasserstein_bary(data.list,return_type = "wpp",method="lp"))
frechet_func(res1,data.list)
system.time(res2<-wasserstein_bary(data.list,return_type = "wpp",method="alternating",
supp.size = M*N-N+1,warmstartlength = 3,pos_maxIter = 100,weights_maxIter = 100))
frechet_func(res2,data.list)
system.time(res3<-wasserstein_bary(data.list,return_type = "wpp",
method="fixed_support",warmstartlength = 3,weights_maxIter = 100,output.supp = res1\$coordinates))
frechet_func(res3,data.list)
system.time(res4<-wasserstein_bary(data.list,return_type = "wpp",
method="sampling",sample.size=8,warmstartlength = 3,pos_maxIter = 100))
frechet_func(res4,data.list)
\#\#Visual Examples
\#\#\#ellipses
set.seed(420)
N<-20
supp.size<-10^2
L<-sqrt(supp.size)
d<-2

```
```

data.list<-vector("list",N)
image.list<-vector("list",N)
for (i in 1:N){
t.vec<-seq(0,2*pi,length.out=supp.size)
pos<-cbind(cos(t.vec)*runif(1,0.2,1),sin(t.vec)*runif(1,0.2,1))
theta<-runif(1,0,2*pi)
rotation<-matrix(c(cos(theta),sin(theta),-1*sin(theta),cos(theta)),2,2)
pos<-pos%*%rotation
pos<-pos+1
pos<-pos/2
W<-rep(1/supp.size,supp.size)
data.list[[i]]<-transport::wpp(pos,W)
I<-bin2d(data.list[[i]]$coordinates,data.list[[i]]$mass,c(L*2,L*2))
I<-smear(I,1,1)
I<-I/sum(I)
image.list[[i]]<-I
}
system.time(res1<-wasserstein_bary(data.list,return_type = "wpp",method="alternating"
,supp.size = supp.size,warmstartlength = 0,pos_maxIter = 10,weights_maxIter = 10,maxIter = 10))
plot(res1)
system.time(res2<-wasserstein_bary(data.list,return_type = "wpp",
method="fixed_support",warmstartlength = 0,weights_maxIter = 50,maxIter=1,
output.supp = grid_positions(2*L,2*L)))
plot(res2)
system.time(res3<-wasserstein_bary(data.list,return_type = "wpp",method="sampling",
sample.size=400,warmstartlength = 0,pos_maxIter = 100,stepsize = 1,maxIter=1))
plot(res3)
system.time(res4<-wasserstein_bary(image.list,return_type = "wpp",
method="regular",stepsize = 1,weights_maxIter = 50))
plot(res4)
system.time(res5<-wasserstein_bary(image.list,return_type = "wpp",
method="fixed_support",shared=TRUE,warmstartlength = 0,weights_maxIter = 50,maxIter=1,
output.supp = grid_positions(2*L,2*L)))
plot(res5)

```
 measures on \(R^{\wedge} d\) using an interior point method.

\section*{Description}

This is a wrapper function for multiple methods to solve the 2-Wasserstein barycenter problem. It contains three methods: "fixed": This function finds the best approximation of the 2-Wasserstein barycenter problem of N finitely supported input measures on a given support set using a modified MAAIPM algorithm to solve the corresponding linear program. "free": This functions finds an approximation of the 2-Wasserstein barycenter using the MAAIPM method by alternating between
updating weights and positions of a candidate barycenter. "multiscale": This finds the best approximation of the 2-Wasserstein barycenter problem of N finitely supported input measures by using a multi-scale version of a modified MAAIPM method. Given a starting grid it solves the fixed support 2-Wasserstein barycenter problem on this grid. Then, the grid is refined, by splitting each grid point into 4 new ones. Afterwards, all grids points below a certain threshold of mass are removed from the support. This procedure is repeated until a prespecified resolution is reached. Note, the generated grids are assumed to be in \([0,1]^{\wedge} 2\).

\section*{Usage}
```

ws_bary_maaipm(
data.list,
method = "fixed",
support,
wmaxIter,
pmaxIter,
return_type = "default",
thresh = 10^-3,
threads = 1
)

```

\section*{Arguments}
\begin{tabular}{ll} 
data.list & \begin{tabular}{l} 
A list of objects from which the barycenter should be computed. Each element \\
should be one of the following: A matrix, representing an image; A path to a \\
file containing an image; A wpp-object; A list containing an entry named 'posi- \\
tions' with the support of the measure and an entry named 'weights' containing \\
the weights of the support points; A list containing en entry named 'positions" \\
specifying the support of a measure with uniform weights.
\end{tabular} \\
A string determining which method is used. The available options "fixed", "free" \\
and "multiscale" are described above.
\end{tabular}
for the "fixed" method there is the type "vec" which returns a vector of length M , containing the weights of the barycenter on the given support and for the "multiscale" method there is the option "mat" which returns the barycenter in matrix form on a grid of the final resolution.
thresh A real number specifying a stopping criterion based on the magnitude of change between consecutive iterations. If one encounters numerical instabilities in the computations in the form of either returned NaNs or warnings notifying the user about near singular matrices, this parameter can be increased to avoid this.
threads An integer specifying the number of threads used for computations.

\section*{Value}

For details on the returned value refer to the parameter return_type.

\section*{References}

Ge, DongDong, et al. "Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem." Advances in Neural Information Processing Systems 32 (2019): 6894-6905. KantorovichRubinstein distance and barycenter for finitely supported measures: Foundations and Algorithms; Heinemann, Klatt and Munk; https://arxiv.org/pdf/2112.03581.pdf.

\section*{Examples}
```

\#Generate a dataset consisting of measures supported on discretized nested ellipses.
N<-5 \#The number of measures generated
M<-20 \#The number of points each ellipse is discretized into
C<-2 \#The parameter of the Kantorovich-Rubinstein distance
data.list<-vector("list",N)
set.seed(42)
ell.num<-3 \#The number of ellipses in each measure.
\#This loop actually generates the measures for the example.
for (i in 1:N){
pos.full<-matrix(0,0,2)
nesting.depth<-ell.num
for (k in 1:nesting.depth){
t.vec<-seq(0, 2*pi, length.out=M)
pos<-cbind(cos(t.vec)*runif(1,0.2,1),sin(t.vec)*runif(1,0.2,1))/(3^(k-1))
theta<-runif(1,0,2*pi)
rotation<-matrix(c(cos(theta),sin(theta),-1*sin(theta), cos(theta)),2,2)
pos.full<-rbind(pos.full, pos%*%rotation)
}
W<-rep(1,M*nesting.depth)
W<-W/sum(W)
data.list[[i]]<-transport::wpp((pos.full+1)/2,W)
}
\#Using the multiscale method
system.time(bary.ms<-WSGeometry::ws_bary_maaipm(data.list,method="multiscale",
support=c(8,8,3,10^-4),wmaxIter=100,return_type="mat",thresh=6*10^-4,threads=1))
\#Using the fixed support method
support<-t(WSGeometry::grid_positions(20,20))

```
```

system.time(bary.fixed<-WSGeometry::ws_bary_maaipm(data.list,method="fixed",
support=support,wmaxIter=100,return_type="wpp", thresh=6*10^-4,threads=1))
\#Using the free support method
support<-t(WSGeometry::grid_positions(8,8))
system.time(bary.free<-WSGeometry::ws_bary_maaipm(data.list,method="free",
support=support,wmaxIter=100,pmaxIter=25,return_type="wpp",thresh=6*10^-4,threads=1))
\#The outputs can be conveniently visualised using the image function for the "mat" output
\#and the plot-method for the wpp-objects provided by the transport package.
image(bary.ms)
plot(bary.fixed)
plot(bary.free)

```
ws_dist Compute the p-Wasserstein distance between two measures

\section*{Description}

This is essentially a wrapper function of transport. It has the advantage of allowing more general input objects, such as images or matrices, without the user having to manually convert these objects.

\section*{Usage}
ws_dist(A, B, \(p=2\), sampling \(=\) FALSE, \(S=\) NULL, \(R=N U L L)\)

\section*{Arguments}

A

B One of the following: A matrix, representing an image; A file name containing an image; A wpp-object.
p
sampling A boolean specifying whether a stochastic approximation (Sommerfeld et al., 2019) should be used to approximate the distance.

S
A positive integer specifying the number of samples drawn in the stochastic approximation.
R

\section*{Value}

A number specifying the computed p-Wasserstein distance.

\section*{References}

M Sommerfeld, J Schrieber, Y Zemel, and A Munk (2019). Optimal transport: Fast probabilistic approximations with exact solvers. Journal of Machine Learning Research 20(105):1-23.

\section*{Examples}
```

P1<-transport::random32a$mass
P2<-transport::random32b$mass
P1<-P1/sum(P1)
P2<-P2/sum(P2)
ws_dist(P1,P2)

```
```

ws_logpca Computes Wasserstein principal components

```

\section*{Description}

Computes principal components in the 2-Wasserstein Space for a dataset of weighted point measures in \(\mathrm{R}^{\wedge} 2\).

\section*{Usage}
ws_logpca(data.list, barycenter, pca.count, steps_number = 21)

\section*{Arguments}
data.list A list of objects of which the principal components should be computed. Each element should be one of the following: A matrix, representing an image; A file name containing an image; A wpp-object; A pp-object; A list containing an entry 'positions' with the support of the measure and an entry 'weights' containing the weights of the support points; A list containing en entry 'positions' specifying the support of a measure with uniform weights.
barycenter A barycenter of the dataset. See data.list for possible object types.
pca. count An integer specifying the number of principal components to be computed.
steps_number An integer specifying the number of discretisation steps for the output of the principal components.

\section*{Details}

This function computes the principal components of a dataset consisting of weighted point measures in \(\mathrm{R}^{\wedge} 2\). To do this it first maps the data to the tangent space at the barycenter and then performs standard Euclidean PCA on this space. Afterwards the resulting components are mapped back to the 2-Wasserstein space.

\section*{Value}

A list with two entries. The first contains a list (of length pca.count), where each entry is a list of wpp-objects specifying one point on the corresponding principal component. The second entry is a vector containing the eigenvalues of the computed principal components. The output can be plotted by applying plotGeodesic to each component of the list.

\section*{References}

E Cazelles, V Seguy, J Bigot, M Cuturi, and N Papadakis (2017); Log-PCA versus Geodesic PCA of histograms in the Wasserstein space. SIAM Journal on Scientific Computing 40(2):B429-B456. W Wei, D Slepcev, S Basu, JA Ozolek, and GK Rohde (2013). A Linear Optimal Transportation Framework for Quantifying and Visualizing Variations in Sets of Images. International Journal of Computer Vision 101(2):254-269.

\section*{Examples}
```

set.seed(2020)
N<-20
supp.size<-10^2
L<-sqrt(supp.size)
d<-2
data.list<-vector("list",N)
image.list<-vector("list",N)
for (i in 1:N){
t.vec<-seq(0,2*pi,length.out=supp.size)
pos<-cbind(cos(t.vec)*runif(1,0.2,1),sin(t.vec)*runif(1,0.2,1))
theta<-runif(1,0,2*pi)
rotation<-matrix(c(cos(theta),sin(theta),-1*sin(theta), cos(theta)), 2, 2)
pos<-pos%*%rotation
pos<-pos+1
pos<-pos/2
W<-rep(1/supp.size,supp.size)
data.list[[i]]<-transport::wpp(pos,W)
}
res1<-wasserstein_bary(data.list,return_type = "wpp",method="alternating",
supp.size = supp.size,warmstartlength = 2,pos_maxIter = 50,
weights_maxIter = 0,maxIter = 1,stepsize=1)
pcomps<-ws_logpca(data.list,res1,3)

Set the image and/or gif flags to TRUE to run the example.

CRAN policy prevents examples from generating files in the working directory,

so this had to be disabled.

plotGeodesic(pcomps$components[[1]],File="PCA1",images=FALSE,gif=FALSE)
plotGeodesic(pcomps$components[[2]],File="PCA2",images=FALSE,gif=FALSE)
plotGeodesic(pcomps\$components[[3]],File="PCA3",images=FALSE,gif=FALSE)

```

\section*{Index}
```

barycenter_lp,2
bin2d, 3
frechet_func, 4
geodesic_pos,4
grid_positions,5
kr_bary, }
kr_dist, 8
location_scatter_bary,9
magick, 13
multi_marginal,11
plotGeodesic, 12, 24
pp-object, 4, 13, 16, 24
smear, 15
transport, 8,23
wasserstein_bary, 16
wpp-object,4-7, 9, 13, 16, 17, 21, 23, 24
ws_bary_maaipm, 20
ws_dist, 23
ws_logpca, 24

```
```

