VarSelLCM: Variable Selection for Model-Based Clustering of Mixed-Type Data
Set with Missing Values
Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here <doi:10.1007/s11222-016-9670-1>). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.
| Version: | 
2.1.3.2 | 
| Depends: | 
R (≥ 3.3) | 
| Imports: | 
methods, Rcpp (≥ 0.11.1), parallel, mgcv, ggplot2, shiny | 
| LinkingTo: | 
Rcpp, RcppArmadillo (≥ 15.0.2-1) | 
| Suggests: | 
knitr, rmarkdown, dplyr, htmltools, scales, plyr | 
| Published: | 
2025-09-19 | 
| DOI: | 
10.32614/CRAN.package.VarSelLCM | 
| Author: | 
Matthieu Marbac [aut],
  Mohammed Sedki [aut, cre] | 
| Maintainer: | 
Mohammed Sedki  <mohammed.sedki at u-psud.fr> | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
http://varsellcm.r-forge.r-project.org/ | 
| NeedsCompilation: | 
yes | 
| Citation: | 
VarSelLCM citation info  | 
| Materials: | 
NEWS  | 
| In views: | 
Cluster, MissingData | 
| CRAN checks: | 
VarSelLCM results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=VarSelLCM
to link to this page.