## ----------------------------------------------------------------------------- library(SparseFunClust) set.seed(24032023) n <- 50 x <- seq(0,1,len=500) out <- generate.data.FV17(n, x) data <- out$data trueClust <- out$true.partition matplot(x, t(data), type='l', col=trueClust, xlab = 'x', ylab = 'data', main = 'Simulated data') ## ----------------------------------------------------------------------------- K <- 2 # run with 2 groups only method <- 'kmea' # version with K-means clustering tuning.m <- FALSE # don't perform tuning of the sparsity parameter (faster) result <- SparseFunClust(data, x, K = K, do.alignment = FALSE, clust.method = method, tuning.m = tuning.m) ## ----------------------------------------------------------------------------- table(trueClust,result$labels) cer(trueClust,result$labels) ## ----------------------------------------------------------------------------- matplot(x,t(data),type='l',lty=1,col=result$labels+1,ylab='', main='clustering results') lines(x,colMeans(data[which(result$labels==1),]),lwd=2) lines(x,colMeans(data[which(result$labels==2),]),lwd=2) plot(x,result$w,type='l',lty=1,lwd=2,ylab='', main='estimated weighting function') abline(v=0.5)