## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----core, eval=FALSE--------------------------------------------------------- # # fits the individual SDTrees in parallel on 22 cores # fit <- SDForest(x = X, y = Y, mc.cores = 22) # # # performs cross validation in parallel # model <- SDAM(X, Y, cv_k = 5, mc.cores = 5) ## ----gpu, eval=FALSE---------------------------------------------------------- # # runs the matrix operations on a gpu if available # fit <- SDForest(x = X, y = Y, gpu = T, mem_size = 1e+7) # tree <- SDTree(x = X, y = Y, gpu = T, mem_size = 1e+7) ## ----candidates, eval=FALSE--------------------------------------------------- # # approximation of candidate splits # fit <- SDForest(x = X, y = Y, max_candidates = 100) # tree <- SDTree(x = X, y = Y, max_candidates = 50) ## ----subsample, eval=FALSE---------------------------------------------------- # # draws maximal 500 samples from the data for each tree # fit <- SDForest(x = X, y = Y, max_size = 500)