Package 'Rgof'

October 30, 2023

Title 1d Goodness of Fit Tests
Version 1.2.2
Description Routines that allow the user to run a large number of goodness-of-fit tests. It allows for data to be continuous or discrete. It includes routines to estimate the power of the tests and display them as a power graph.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.1
LinkingTo Rcpp
Imports Rcpp, parallel, ggplot2, stats
Suggests rmarkdown, knitr
VignetteBuilder knitr
NeedsCompilation yes
Author Wolfgang Rolke [aut, cre] (https://orcid.org/0000-0002-3514-726X)
Maintainer Wolfgang Rolke <wolfgang.rolke@upr.edu></wolfgang.rolke@upr.edu>
Repository CRAN
Date/Publication 2023-10-30 20:20:02 UTC
R topics documented:
check.functions gof_power_cont gof_power_disc gof_test_cont gof_test_disc plot_power
Index

2 gof_power_cont

check.functions

This function checks whether the inputs have the correct format

Description

This function checks whether the inputs have the correct format

Usage

```
check.functions(pnull, rnull, qnull, phat, vals, x)
```

Arguments

pnull	cdf under the null hypothesis
rnull	routine to generate data under the null hypothesis
qnull	routine to calculate quantiles under null hypothesis
phat	function to estimate parameters from the data
vals	vector of discrete values
x	data

gof_power_cont

Find the power of various gof tests for continuous data.

Description

Find the power of various gof tests for continuous data.

Usage

```
gof_power_cont(
 pnull,
  rnull,
  qnull,
  ralt,
  param_alt,
  phat,
  TS,
  alpha = 0.05,
 Range = c(-Inf, Inf),
 B = c(1000, 1000),
 nbins = c(100, 10),
  rate = 0,
 maxProcessors,
 minexpcount = 2
)
```

gof_power_cont 3

Arguments

pnull	function to find cdf under null hypothesis
rnull	function to generate data under null hypothesis
qnull	quantile function (inverse cdf). If missing Wasserstein test can not be done.
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
phat	function to estimate parameters from the data
TS	user supplied function to find test statistics
alpha	=0.05, the level of the hypothesis test
Range	=c(-Inf, Inf) limits of possible observations, if any
В	=c(1000, 1000), number of simulation runs to find power and null distribution
nbins	=c(100,10), number of bins for chi square tests.
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
maxProcessors	maximum of number of processors to use, 1 if no parallel processing is needed or number of cores-1 if missing
minexpcount	=2 minimal expected bin count required

Value

A numeric matrix of power values.

Examples

```
# Power of tests when null hypothesis specifies the standard normal distribution but
# true data comes from a normal distribution with mean different from 	exttt{0}.
pnull = function(x) pnorm(x)
qnull = function(x) qnorm(x)
rnull = function() rnorm(50)
ralt = function(mu) rnorm(50, mu)
\verb|gof_power_cont(pnull, rnull, qnull, ralt, c(0.25, 0.5), B=c(500, 500))|\\
# Power of tests when null hypothesis specifies normal distribution and
# mean and standard deviation are estimated from the data.
# Example is not run because it takes several minutes.
\# true data comes from a normal distribution with mean different from 0.
pnull = function(x, p=c(0, 1)) pnorm(x, p[1], ifelse(p[2]>0.001, p[2], 0.001))
qnull = function(x, p=c(0, 1)) qnorm(x, p[1], ifelse(p[2]>0.001, p[2], 0.001))
rnull = function(p=c(0, 1)) rnorm(50, p[1], ifelse(p[2]>0.001, p[2], 0.001))
phat = function(x) c(mean(x), sd(x))
\verb|gof_power_cont(pnull, rnull, qnull, ralt, c(0, 1), phat, B=c(200, 200), maxProcessor=2)|
```

gof_power_disc

gof_power_disc

Find the power of various gof tests for discrete data.

Description

Find the power of various gof tests for discrete data.

Usage

```
gof_power_disc(
   pnull,
   rnull,
   vals,
   ralt,
   param_alt,
   phat,
   TS,
   alpha = 0.05,
   B = c(1000, 1000),
   nbins = c(100, 10),
   rate = 0,
   maxProcessors,
   minexpcount = 2
)
```

Arguments

pnull	cumulative distribution function under the null hypothesis
rnull	a function to generate data under null hypothesis
vals	values of discrete rv.
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
phat	function to estimate parameters from the data
TS	user supplied function to find test statistics
alpha	=0.05, the level of the hypothesis test
В	=c(1000, 1000), number of simulation runs to find power and null distribution
nbins	=c(100,10), number of bins for chisquare tests.
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
maxProcessors	maximum of number of processors to use, 1 if no parallel processing is needed or number of cores-1 if missing
minexpcount	=2 minimal expected bin count required

gof_test_cont 5

Value

A numeric matrix of power values.

Examples

```
# Power of tests when null hypothesis specifies a binomial N=10, p=0.5 distribution but # true data comes from a binomial distribution with success probability 0.55 or 0.6. vals=0:10 pnull = function() pbinom(0:10, 10, 0.5) rnull = function() table(c(0:10, rbinom(1000, 10, 0.5)))-1 ralt = function(p) table(c(0:10, rbinom(1000, 10, p)))-1 gof_power_disc(pnull, rnull, vals, ralt, c(0.515, 0.53), B=c(500, 500)) # Power of tests when null hypothesis specifies a binomial N=10 distribution and # p is estimated from the data. pnull=function(p=0.5) pbinom(0:10, 10, p) rnull = function(p=0.5) table(c(0:10, rbinom(1000, 10, p)))-1 ralt = function(p=0.5) table(c(0:10, rbinom(1000, 10, p)))-1 phat = function(x) mean(rep(0:10, x))/10 gof_power_disc(pnull, rnull, vals, ralt, phat, param_alt=0.6, B=c(100, 100), maxProcessors = 2)
```

gof_test_cont

This function performs a number of gof tests for continuous data

Description

This function performs a number of gof tests for continuous data

Usage

```
gof_test_cont(
    x,
    pnull,
    rnull,
    qnull,
    phat,
    TS,
    nbins = c(100, 10),
    rate = 0,
    Range = c(-Inf, Inf),
    B = 5000,
    minexpcount = 2,
    maxProcessors = 1,
    doMethod = "Default"
)
```

gof_test_disc

Arguments

X	data set
pnull	cdf under the null hypothesis
rnull	routine to generate data under the null hypothesis
qnull	routine to calculate quantiles under null hypothesis
phat	function to estimate parameters from the data
TS	user supplied function to find test statistics
nbins	=c(100, 10) number of bins for chi-square tests
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
Range	=c(-Inf, Inf) limits of possible observations, if any, for chi-square tests
В	=5000 number of simulation runs
minexpcount	=2 minimal expected bin count required
maxProcessors	=1number of processors to use in parallel processing. If missing single processor is used.
doMethod	Methods to include in tests

Value

A list with vectors of test statistics and p values

Examples

```
# Tests to see whether data comes from a standard normal distribution. pnull = function(x) pnorm(x) qnull = function(x) qnorm(x) rnull = function() rnorm(100) x = rnorm(100) gof_test_cont(x, pnull, rnull, qnull, doMethod="all") # Tests to see whether data comes from a normal distribution with # mean and standard deviation estimated from the data. pnull = function(x, p=c(0, 1)) pnorm(x, p[1], ifelse(p[2]>0.001, p[2], 0.001)) qnull = function(x, p=c(0, 1)) rnorm(100, p[1], ifelse(p[2]>0.001, p[2], 0.001)) rnull = function(x) c(mean(x), sd(x)) gof_test_cont(x, pnull, rnull, qnull, phat)
```

gof_test_disc

This function performs a number of gof tests for discrete data.

Description

This function performs a number of gof tests for discrete data.

gof_test_disc 7

Usage

```
gof_test_disc(
    x,
    pnull,
    rnull,
    vals,
    phat,
    TS,
    nbins = c(100, 10),
    rate = 0,
    B = 5000,
    minexpcount = 2,
    maxProcessors = 1,
    doMethod = "Default"
)
```

Arguments

X	data set (the counts)
pnull	cumulative distribution function under the null hypothesis
rnull	routine to generate data under the null hypothesis
vals	a vector of values of discrete random variables
phat	a function to estimate parameters from the data
TS	user supplied function to find test statistics
nbins	=c(100, 10) number of bins for chi-square tests
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
В	=5000 number of simulation runs
minexpcount	=2 minimal expected bin count required
maxProcessors	=1 number of processors to use in parallel processing. If missing single processor is used.
doMethod	Methods to include in tests

Value

A numeric matrix of test statistics and p values

Examples

```
# Tests to see whether data comes from a binomial (10, 0.5) distribution. vals=0:10 pnull = function() pbinom(0:10, 10, 0.5) rnull = function() table(c(0:10, rbinom(1000, 10, 0.5)))-1 x = rnull() gof_test_disc(x, pnull, rnull, vals, doMethod="all") # Tests to see whether data comes from a binomial distribution with the success probability # estimated from the data.
```

8 plot_power

```
 pnull = function(p=0.5) \ pbinom(0:10, 10, ifelse(p>0&&p<1,p,0.001)) \\ rnull = function(p=0.5) \ table(c(0:10, rbinom(1000, 10, ifelse(p>0&&p<1,p,0.001))))-1 \\ phat = function(x) \ mean(0:10*x)/1000 \\ gof_test_disc(x, pnull, rnull, vals, phat)
```

plot_power

This function draws the power graph, with curves sorted by the mean power and smoothed for easier reading.

Description

This function draws the power graph, with curves sorted by the mean power and smoothed for easier reading.

Usage

```
plot_power(pwr, xname = " ", Smooth = TRUE, span = 0.25)
```

Arguments

pwr a matrix of power values, usually from the twosample_power command

xname Name of variable on x axis

Smooth =TRUE lines are smoothed for easier reading

span =0.25bandwidth of smoothing method

Value

plt, an object of class ggplot.

Index

```
check.functions, 2
gof_power_cont, 2
gof_power_disc, 4
gof_test_cont, 5
gof_test_disc, 6
plot_power, 8
```