## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("Rdimtools") ## ----eval=FALSE--------------------------------------------------------------- # ## install.packages("devtools") # devtools::install_github("kisungyou/Rdimtools") ## ----setup, message=FALSE, warning=FALSE-------------------------------------- library(Rdimtools) ## ----echo=FALSE, include=FALSE------------------------------------------------ vernow = utils::packageVersion("Rdimtools") ndo = (sum(unlist(lapply(ls("package:Rdimtools"), startsWith, "do.")))) nest = (sum(unlist(lapply(ls("package:Rdimtools"), startsWith, "est.")))) ## ----message=FALSE, warning=FALSE, fig.align='center', fig.width=7, fig.height=3---- # load the iris data X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) # we will compare 5 methods (out of 17 methods from version 1.0.0) vecd = rep(0,5) vecd[1] = est.Ustat(X)$estdim # convergence rate of U-statistic on manifold vecd[2] = est.correlation(X)$estdim # correlation dimension vecd[3] = est.made(X)$estdim # manifold-adaptive dimension estimation vecd[4] = est.mle1(X)$estdim # MLE with Poisson process vecd[5] = est.twonn(X)$estdim # minimal neighborhood information # let's visualize plot(1:5, vecd, type="b", ylim=c(1.5,3.5), main="estimating dimension of iris data", xaxt="n",xlab="",ylab="estimated dimension") xtick = seq(1,5,by=1) axis(side=1, at=xtick, labels = FALSE) text(x=xtick, par("usr")[3], labels = c("Ustat","correlation","made","mle1","twonn"), pos=1, xpd = TRUE) ## ----message=FALSE, warning=FALSE, fig.align='center', fig.width=7------------ # run 3 algorithms mentioned above mypca = do.pca(X, ndim=2) mylap = do.lscore(X, ndim=2) mydfm = do.dm(X, ndim=2, bandwidth=10) # extract embeddings from each method Y1 = mypca$Y Y2 = mylap$Y Y3 = mydfm$Y # visualize par(mfrow=c(1,3)) plot(Y1, pch=19, col=lab, xlab="axis 1", ylab="axis 2", main="PCA") plot(Y2, pch=19, col=lab, xlab="axis 1", ylab="axis 2", main="Laplacian Score") plot(Y3, pch=19, col=lab, xlab="axis 1", ylab="axis 2", main="Diffusion Maps")